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Key Question:

How have we utilized modern Observe Phenomena
mathematics and technology in
this process?
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Key Question:

How have we utilized modern Observe Phenomena
mathematics and technology in
this process?

Observing Phenomena

Hardware and technology
developed for extending
our observational
capacity and ability to
gather data.

Large Hadron Collider
generates hundreds generates data for

of gigabytes of data the study of particle
per month. physics.
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The Scientitic Method

Traditional Discovery

Discovering from first principles
and testing on data.

Strengths:

1. We (generally) find
encodings of phenomena
that are explainable from
theory.

2. Proposed hypotheses are
(generally) quick to test on
data (if it exists).

Limitations:

Coming up with new theories is
challenging to do manually.
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The Scientitic Method

Traditional Discovery

Discovering from first principles
and testing on data.

Strengths:

1. We (generally) find
encodings of phenomena
that are explainable from
theory.

2. Proposed hypotheses are
(generally) quick to test on
data (if it exists).

Limitations:

Coming up with new theories is
challenging to do manually.
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“The number of researchers required today to achieve the

famous doubling ot computer chip density is more than 18 times

larger than the number required in the early 1970s.”
Bloom et al., Are Good Ideas Getting Harder to Find?, American

Economic Review, 2020
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The Scientitic Method

Data and Background Theory Methods

Al Descartes [Christina Cornelio, et al. Nature
Comms, 2023]

Numerical Predictions

Background
data

theory
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Fit to data, then test on background theory

Strengths:

1. Can work with small datasets.

2. Recover a certificate of derivability from
axioms along with hypothesis.
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Unified Methods

Al Hilbert [Ryan Cory-Wright, et al. Nature
Comms, 2024]
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min ) q(x) +2d(g(x).A)

eR, [x .
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simultaneously using polynomial optimization Hypothesis 2
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Strengths:

1. Simultaneously fit to data along with

generating certificates of derivability

2. Discovered solutions are provably optimal
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The Scientitic Method

Key Question:

How have we utilized modern
mathematics and technology
in this process?

Answer:

For most of the modern _
scientific process, we get a lot
of mileage from :
computational tools and
modern technology.
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The Scientitic Method

Revisiting Assumptions:

The problem with data driven
systems is that they can
generate formulae that are
difficult to interpret or are not
consistent with theory.

The data+background theory
methods generate formulae
that are derivable from known :
theory. :

But often times theories can
be incorrect or incomplete!
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The Scientitic Method

Revisiting Assumptions: Examples:

The problem with data driven 1. Cosmology - e.g Lithium Abundance

systems is that they can o o |

generate formulae that are 2. Historic example: Perihelion Precession of Mercury

difficult to interpret or are not
consistent with theory.
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Data-Driven Methods

Discovering from data (E.g Al Feynman,
Udrescu and Tegmark 2020)

Studv the question

0000
lllllllllllllllllllllllllllllllllllllllll

If inconsistent
with theory

Limitations:

llllllllllllllllllllllllllllllllllll
* "

May fail to be consistent with theory. Less
interpretable.

Examine Results




The Scientitic Method

Data and Background Theory Methods

Al Descartes [Christina Cornelio, et al. Nature
Comms, 2023]

Numerical

Background Predictions
data
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Limitations:

We primarily use background theory for
verification, not search. Verification only works
when the background theory is sufficient.
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Unified Methods

Al Hilbert [Ryan Cory-Wright, et al. Nature
Comms, 2024]
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Limitations:

Only works with systems expressible as
polynomials. For derivability certificates, we
require axiom systems which contain complete
information.
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The Scientitic Method

Key Question for our work

When theory is inconsistent or
incomplete and cannot
explain a phenomenon, can
we generate corrections in an

automated way?
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The Scientitic Method - Our Contribution

Key Question for our work

When theory is inconsistent or
incomplete and cannot
explain a phenomenon, can
we generate corrections in an
automated way?

: : : Theory 2.0
Contribution: An automated Bl Asiom-t Axiom 1%
: ‘ : I Axiom 2
Axiom 3

candidates for axioms that i % 3 /\xiom 4

method of generating

explain discovered
phenomena.
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Preliminaries
Rephrasing the
discovery
problem as a
geometric
problem.
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Al Hilbert Review

Al Hilbert

Assumption: all axioms are encoded as
polynomials over some basis (traditional
indeterminates, trig functions, exponents, etc)
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Fit to both theory and background data
simultaneously using polynomial optimization.
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Al Hilbert Review

Key idea: For polynomials, we can exactly describe the space of derivable functions.

Let A = {A;(X),...,A(X)} denote the set of polynomial background axioms.

Putinar's Positive Stellensatz*
A degree < d polynomial g(Xx) vanishes on the solution set Z = {x € R" : A(x) = 0 for each i} if and only if for some
degree < d polynomials a(X), ..., x(X), we have

k
g(x) = ) a(X)A(X)
=1

Takeaway: we can express algebraic derivability from axioms as algebraic combinations of axioms!

*Putinar’s positive stellensatz is actually a very similar statement about semi algebraic sets allowing for inequalities. We cite Putinar for continuity with

Al Hilbert, but we will use this more restricted version without inequalities. You can also see: Hilbert's Nullstellensatz, which is the generalization of this
statement for arbitrary degrees.



Al Hilbert Review

Example: Kepler's Third Law of Planetary Motion
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Instead of writing a traditional derivation ot Kepler from the axioms, we could write it as the following combination

—d2p*w?
_p2
dip” + 2d,d,p* + dyp”
dip” + 2d,d,p* + dyp°
(pwd,d, + d\dy)(md, + myd, + 2myd,)




Al Hilbert Review

Detine the distance between a potential candidate hypothesis

k
d(q(x),A) = min coeffllg(x) - ) aXAX)|
=1

;e [Rn, JX]

So we can solve the optimization problem

min ), q(x) +4d(g(x), A)
7ERnalX] x.cdata

This can be computationally expensive (e.g. Radiational Gravitational Wave Equation took 640GB memory, >5
hours on MIT SuperCloud). First motivation to bring in geometry: can we speed this up?



Converting Discovery to Geometry

The discovery problem with complete theory is a projection problem.
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Converting Discovery to Geometry

Other Variables

Variety What this
captures
The set of solutions to a
system ot polynomial The solution set for

equations A;,...,A, is which we will take
called an algebraic projections to be the

variety V(A4,,...,A)) new search space




Converting Discovery to Geometry

Variety

The set of solutions to a

system of polynomial

equations A, ..., A is
called an algebraic
variety V(A,, ..., Ap)

Other Variables

What this
captures

The solution set for
which we will take
projections to be the
new search space

Stellensatz

Every polynomial g that
vanishes over the solution
set of a system of
polynomials A, ..., A, is
an algebraic combination.



Converting Discovery to Geometry

Variety

The set of solutions to a

system of polynomial
L ALTS
called an algebraic
variety V(A,, ..., Ap)

equations Ay, ..

Other Variables

What this
captures

ldeals

The ideal generated by a
polynomial system
A, ..., A is the set of all
algebraic combinations. It
is denoted (A,...,A;).

The solution set for
which we will take
projections to be the
new search space

What this captures

A closed form expression
of the space of all
phenomena that are
algebraic consequences
of the axioms.



Converting Discovery to Geometry

How does this help with projection? The following facts and theorems help make this work

Fact 1: An algebraic consequence of axioms will not generate new solution points. l.e. V(A,,...,A) = V((A,...,A}))

(dl + dz)ng — Gm1m2 — O

2 __

(dl +d2)2Fg_ Gm1m2 = () Fc_mzdzw =0
F.—mydw* =0 F.—F,=0
wp—1=20

(wp—1)+pFc—Fg)=0




Converting Discovery to Geometry

How does this help with projection? The following facts and theorems help make this work

Fact 1: An algebraic consequence of axioms will not generate new solution points. l.e. V(A,,...,A) = V((A,...,A}))

Fact 2: There can be multiple generating sets for the same ideal. The generators are not unique.

(A + d)°Fy — Gy, = 0 (d, + dy)*F, — Gmymy = 0
F.—my,d,w= =0 F. — mydw* =0
Fo—F,=0 F.—F,=0

wp—1=0 (wp — 1)+ p(Fc — Fg) = 0

Other Variables




Converting Discovery to Geometry

How does this help with projection? The following facts and theorems help make this work

Fact 1: An algebraic consequence of axioms will not generate new solution points. l.e. V(A;,...,A;) = V((A,, ..., A}))

Fact 2: There can be multiple generating sets for the same ideal. The generators are not unique.

Elimination Theorem
There exists a unique generating set, called a Grobner Basis, & = {g;,..., gy} of (4;,...,A;) such that

(A, .., AD N Ry, ..., x ] =1{g,..., gy} NR[x, ..., x,]

Other Variables




Converting Discovery to Geometry

This gives us the following options:
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Projection / Projection + Al Hilbert

2
)

Theory
Axiom 1 It theory is sufficient, Run Hypothesis 1
Axiom 2 ’ Projection Hypothesis 2

Axiom 3

It theory is
insufficient
Projection to
reduce the | Hypothesis 1
I search space, Hypothesis 2

Al Hilbert
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Converting Discovery to Geometry - Results

What this does for us: we can achieve a reduction in LP size and therefore speedup for Al Hilbert.

Problem Al Hilbert Projection Projection+Hilbert
Found Monoms Time Found Basis Size Found Monoms Time
Grav Waves v’ 487000 14656s™ v’ 1 v’ 12778  32.7s
Kepler v’ 4048 5.12s v’ 3 v’ 435 0.04s
Kepler w/o axiom 1 v’ 4048 5.23s v’ 1 v’ 435 0.05s
Compton Scattering v’ 54264 1789s v’ 1 v’ 924  1.9s
Light Damping v’ 58170 125s v’ 1 v’ 1439 0.8s
Light Damping** 7 8450393 T/o CPU™ v’ 1 v’ 1439  0.8s
Neutrino Decay v’ 2643 3.4s v’ 1 v’ 54 0.2s
Escape Velocity v’ 5832 4.3s v’ 1 v’ 210 0.1s
Escape Velocity*** ? 774753 T/o CPU™ v 1 v 210  0.1s
Hall Effect v' 1045830 T/o CPUTT v’ 1 v 424  11.1s
Inelastic Collision v’ 41754 123s v’ 1 v’ 81 0.3s
Hagen Poiseuille v’ 4140 4.2s v’ 1 v’ 76  0.5s
Einstein v’ 5634 1.5s v’ 1 v’ 81 0.1s




Abductively
Inferring Axioms
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Abductive Inference

Aim: Given a polynomial phenomenon Q and a polynomial axiom system Ay, ..., A;_; which does not derive Q,
generate a list of candidate polynomials {A,i} such that Ay, ... ,Ak_l,A,i do prove Q for each i.

Constraints:

1. We assume we do not have any data for A, (otherwise this would be equivalent to hypothesis generation
and we could fit to data)

2. We assume no knowledge about the exact variables over which A, is defined other than it is defined over a
subset of variables of the entire system (otherwise we could either gather data or project varieties as before)

3. We assume that A, is “simpler” than Q - we will make this more precise in a few slides. This is to avoid the
trivial case A, = Q.

4. We will generalize to multiple missing axioms, but for now still stick to one for illustration.



Abductive Inference

Key idea: Reducibility introduced by Q to the known axioms tells us about residuals.

Irreducible Varieties

A variety V is irreducible if it cannot be written as the union of two smaller varieties.

V(y — x?) Vix+y+z-1) Vixy — 1) Vix —y,x*> +y* —2)



Abductive Inference

Key idea: Reducibility introduced by Q to the known axioms tells us about residuals.

Irreducible Varieties and Reducible Varieties

A variety V is irreducible if it cannot be written as the union of two smaller varieties. It is reducible otherwise.

Viv2 — 52 V(z,(x=1)>+y*=1)- V(r — x2)(7 — 2
(Y —x) (et 14 y2 - 1) ((z = x7)(z—y7))



Abductive Inference

Key idea: Reducibility introduced by Q to the known axioms tells us about residuals.

Observation
We can intersect irreducible varieties to obtain reducible varieties.




Abductive Inference

Key idea: Reducibility introduced by Q to the known axioms tells us about residuals.

Observation

We can intersect irreducible varieties to obtain reducible varieties.

Let's assume we have V(A,,..., A, ;) and V(O). Then:

VA,,..., A,_)NVQ)=V(A,,...,A,_,0)=V((A,,...,A,_,0))

k
f O = 2 a:A; for unknown a; and an unknown A;, then (A,...,A,_,O0) =(A,....,A,_|,A}).
i=1

VA, ..., A,_)NV(O)=V(KA,...,A,_,O)=V(A,....,A_,A))=V(A,,...,A_) N V(rA)

It the residual @, A, is non trivial (i.e O contains some non trivial componentsin A,,...,A,_;) then

introducing O introduces reducibility directly related to a;, and A,.



Abductive Inference

im:

Given the axioms Ay, ...,A,_; and phenomenon Q, study the irreducible components of V(A,,...,A,_;, Q).

|dea:
Remove the components of Q inthe A,,...,A,_; directions by looking at the irreducible

components of V(A,,...,A,_;, O).

Aﬂa‘OgyI PCA Variable?2 A Variable2 A

PCA1
PCA2

Variable 1




Abductive Inference

im:

Given the axioms Ay, ...,A,_; and phenomenon Q, study the irreducible components of V(A,,...,A,_;, Q).

|dea:
Remove the components of Q in the A,,...,A,_; direction by looking at the irreducible

components of V(A,,...,A,_;, O).

Analogy: PCA

Simplicity criterion: We want candidates for A, which explain Q that result in minimal

residuals with respectto A, ..., A,_;.



Abductive Inference

im:

Given the axioms Ay, ...,A,_; and phenomenon Q, study the irreducible components of V(A,,...,A,_;, Q).

Concern 1:
There are infinitely many polynomials that could intersect to generate the irreducible component.




Abductive Inference

im:

Given the axioms Ay, ...,A,_; and phenomenon Q, study the irreducible components of V(A,,...,A,_;, Q).

Hilbert’s Basis Theorem:
Any every ideal I in R[x] has a finite set of generators I = (F,...., F




Abductive Inference

im:

Given the axioms A, ...,A,_; and phenomenon Q, study the irreducible components of V(A,,...,A,_;, Q).

Concern 2:
We need a computational way of tinding the irreducible components of V(A,,...,A._;, O).




Abductive Inference

im:
Given the axioms A, ...,A,_; and phenomenon Q, study the irreducible components of V(A,,...,A,_;, Q).

Kev Theorem: Lasker-Noether Primary Decomposition Theorem

~ Every variety V(I) can be written as a union of irreducible varieties U %




Abductive Inference - Our System

Variety Decomposition

Ar_1, Q)

Candidate set
{A]{} that

Cor each f it does, add Al provably explains

Hypothesis generator AIJ; ?f V., test it to a list of candidates 0

Q




Results - Single Missing Axiom

Kepler's Third Law ot Planetary Motion
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Results - Single Missing Axiom

Kepler's Third Law ot Planetary Motion

We
Kep
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<now from Al Feynman and Al Hilbert and other systems that with data, we can still recover

er's Law.



Results - Single Missing Axiom

Kepler's Third Law ot Planetary Motion
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Computing the primary decomposition gives:

<m29Fg9Fc9Wp o 1>

(F.— F,,wp — 1,mp* — dd, — 2d,d; — d23, F,p —wm,d,, ng2 — mydy, F,(d) + d,)* — mm,)

This is the only equation in the basis that can be added to the axiom list to derive Kepler.



Results - Single Missing Axiom

Kepler's Third Law ot Planetary Motion
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FC — m2d2W2 — : P = 1 :
- (my + my)
F,—F,= : ;
- ==l . ‘guEEEEEEEEEEEESR .t
"l lllllllllllll m e?

Computing the primary decomposition gives:

(my, I, F.)
(dy, my, I, F.)
(m, F,. — F,,(d + d2)2, F, - w2m2d2)
(F.— F,,wp — 1, m1p2 — d12d2 — 2d1d22 — d23, ng2 — MyHd,, Fg(dl + d2)2 — mym,)

(F.— F,wp+ 1, mp* — didy — 2d,d; — d23, ng2 + mydy, Fo(d) + d,)* — mm,)



Results - Single Missing Axiom

Kepler's Third Law ot Planetary Motion

“ IS ESEEEENEEEEEESR ol 0‘ .‘ EEEEEEEEEEEEEEER LIS
" Axioms . . Phenomenon .
(dl + dz)ng — mym, = - 3
. — 4(d, + do)
FC — m2d2W2 — : P = 1 :
- (my + my)
F,—F,= : ;
- ==l . ‘guEEEEEEEEEEEESR .t
"l lllllllllllll m e?

Looking at the last two components, which contain polynomials that can be used to derive Kepler:

(F.— F,wp —1, mp* — didy — 2d,d; — d23, ng2 — myd,, F(d| d,)* — mm,)

4
Why wp + 1? Because in the algebraic combination Q = Z A, itturnsout ay, = wp + 1.
i=1



Results - Single Missing Axiom

Finstein's Relativistic Time Dilation Law
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Incorrect Axioms
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Stationary light clock
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.‘ “
. - . Phenomenon .
/// /7 mirror - cdty—2d =0 - E .
s dt=2LA\V*+c? - -
: : s J—Jo v -
m L2:d2+V(dt/2)2 n ﬁ - f — 1 ——2 — 1 :
u . . c -
- ? . fo = 1/d, : : :
: f=1/dt : . .
dt "llllllllllllllll". ‘tnnsssmsnnnnnnns?
v-7

We know that both Al Descartes and Al Hilbert discover the correct formula

Moving light clock regardless of theory, and can select the correct axiom.




Results - Single Missing Axiom

Finstein's Relativistic Time Dilation Law
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Incorrect Axioms
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L? = d? + v(dt/2)?
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Stationary light clock
Phenomenon

4
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A

L ¢ f, = 1/dt,
f=1/dt
dt ’.lllllllllllllll‘ fesEEEREEEEEEEEE®
1% 7
’ Even it the system is incomplete, both systems can correctly recover the law.

Moving light clock




Results - Single Missing Axiom

Finstein's Relativistic Time Dilation Law

/// / / / mirror .“;-"""X.......“ .‘llllllllllllllll.

: hcorrect Axioms : h Phenomenon .

- cdty —2d = 0 - : -
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Stationary light clock Out system generates the following candidates for the missing axiom:

L4 L (L L mimor cdt — 2L =0
2Lf +¢c =0

't we had no information about the speed of light, we recover that the speed
of light must be constant.

Moving light clock




Results - Single Missing Axiom

Problem # Axioms Recovered Avg. Time (s) Total Axioms
Kepler 4/4 0.1 4
Compton 10/10 5.4 10
Einstein S/5 1.5 S
Escape Velocity 3/5 0.4 S
Light Damping 3/5 1.6 S
Hagen Poiseuille 4/4 0.6 4
Neutrino Decay S/5 3.5 S
Hall Effect 719 11.1 9

7/7 7

Carrier-Resolved PhotoHall Effect

1.1



Results - Multiple Missing Axioms
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(d, + dy)°F, — mym, = 0
FC — m2d2W2 — O
e
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N EEEEEEEEN)
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What if we're missing more axioms or need to make more corrections?
(my, F,, (d, + dy)°)
(my, (d; + d>,)*, Fc — w*m,d,)
(my, F py )
(mp* —did, — 2d,d; — d;, ng2 — mydy, F(d) + d,)* — mym,, F. — w?m,d,)

We don’t seem to recover the two missing axioms. Question: What are the criteria tfor derivability?



Results - Condition for Derivibility

Theorem:

Forideals I, J, it dim I = dim J and I C J, then V(I) and V(J) share a common irreducible component.

Missing r axioms / requiring r corrections to explain j phenomena:

Take I = <A19° - '9Ak—r’ Ql" ) "Qj>
Take J=(A,..., A})

'hen we can recoverA,_,.,...,A; from the shared irreducible component if dim 7 = dim J.

Main idea: Intersecting a polynomial surtace V(A)) with a variety V(A,,...,A;_|) decreases the dimension by at most
one. Any dimensions of information lost inA,_,.,...,A; need to be made up by Q,, ..., Qj to guarantee recovery.




Results - Condition for Derivibility

Theorem:

Forideals I, J, it dim I = dim J and I C J, then V(I) and V(J) share a common irreducible component.

Missing r axioms / requiring r corrections to explain j phenomena:

Take I = <A19° ° °9Ak—r’ Ql" ) "Qj>
Take J=(A,..., A})

'hen we can recoverA,_,.,...,A; from the shared irreducible component if dim 7 = dim J.

Main idea: Intersecting a polynomial surtace V(A)) with a variety V(A,,...,A;_|) decreases the dimension by at most
one. Any dimensions of information lost inA,_,.,...,A; need to be made up by Q,, ..., Qj to guarantee recovery.

This is in line with what we had before:

k k
it Q, = Z A, O, = Z P.A., then for unknown a;, 5., A,_, A, then
i=1

= A A0 0100 = (A A A1 1A



Results - Multiple Missing Axioms
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But we still recover some information!
(my, F, (dy + dy)°)
(my, (d; + d>,)*, Fc — w*m,d,)
(my, F py )
(mp* —did, — 2d,d; — d;, ng2 — mydy, F(d) + d,)* — mym,, F. — w?m,d,)



Results - Multiple Missing Axioms
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But we still recover some information!

Axiom 2: . — m2d2W2 = (0 | We have discovered a reformulation of centrifugal force with
Inferred : ng2 —myd, =0 | F,=F,w=1/pswapped in.

C




Results - Multiple Missing Axioms
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One step further: Missing 3 out of 4 axioms.

This time, without knowing anything about centritugal force, we recover

. 2 _ _
Interred: Fop” —myd, =0 the centrifugal force equation with F. = F,,w = 1/p swapped in




Results - Multiple Missing Axioms

Problem Missing Axioms (Tuple) CPU Time Recovered
Kepler {(dl -+ d2)2Fg — mima, FC — mzdsz} O.1s X
Kepler {(d1 + d2)°F; — mime, F. — F,} 0.3s v’
Kepler {(d1 -+ d2)2Fg — mMmimsz, WP — 1} O.1s X
Kepler {F, — madow?, F. — F,} 0.1s v’
Kepler {F, — madow?®, wp — 1} 0.2s v’
Kepler {F.— F,, wp— 1} 0.1s v’
Kepler {(dl - dz)ng — mims, F. — mzdz’wz, F. — Fg} 0.1s X
Kepler {(dl dz)QFg — mima, FC — mgdng, wp — 1} O.1s X
Kepler {(d1 + d2)*F; — mimo, F. — F,, wp — 1} 0.1s X
Kepler {F, — madow?®, F. — F,, wp — 1} 0.2s v’



Results - Multiple Missing Axioms

Problem Missing Axioms (Tuple) Time Recovered
Einstein {cdto — 2d, 4AL° — 4d* — v*dt’}  0.4s v’
Einstein {edto — 2d, fodto — 1} O.1s v’
Einstein {cdto — 2d, fdt —1}  0.1s X
Einstein {edto — 2d, cdt — 2L} 0.1S v’
Einstein {4L?% — 4d? — v3dt?, fodto —1}  0.2s X
Einstein {4L? — 4d? — v?dt?, fdt —1}  0.1s v’
Einstein {4L° — 4d* — v°dt?, cdt — 2L}  0.1s v’
Einstein {fodto — 1, fdt —1}  0.2s X
Einstein {fodto — 1, cdt — 2L} 0.1s X
Einstein {fdt — 1, cdt — 2L}  0.1s v’
Einstein {Cdto — 2d, 4L2 — 4d2 — ’U2dt2, fodto — 1} 0.1s X
Einstein {cdto — 2d, 4L% — 4d* — v?dt?, fdt —1}  0.1s X
Einstein  {cdto — 2d, 4L° — 4d* — vdt?, cdt — 2L}  0.3s v’
Einstein {cdty — 2d, fodto — 1, fdt —1}  0.1s X
Einstein {cdto — 2d, fodto — 1, cdt — 2L}  0.1s X
Einstein {cdto — 2d, fdt —1, cdt — 2L}  0.2s X
Einstein {4L?% — 4d? — v?dt?, fodto — 1, fdt —1}  0.1s X
Einstein =~ {4L° — 4d® — v?dt?, fodto — 1, cdt — 2L}  0.1s v’
Einstein {4L? — 4d?* — v*dt?, fdt — 1, cdt — 2L}  0.1s X
Einstein {fodto — 1, fdt — 1, cdt — 2L} 0.1s X




Results - Multiple Missing Axioms

Problem # Tuples Recovered Avg. Time (s) # of Axioms
Kepler 5/10 0.1 4
Einstein 8/20 1.5 S
Escape Velocity 6/20 0.4 S
Light Damping 5/20 1.6 S
Hagen Poiseuille 6/10 0.6 4
Neutrino Decay 7/20 3.5 S



Limitations, Ongoing, and Future Work

1. Polynomials: We are currently restricted to polynomials (including traditional polynomials, trig
polynomials, etc). We cannot handle ODEs / PDEs (yet).

2. Sensitive to noise: This method is somewhat sensitive to noisy in coefficients of phenomena
polynomials due to the exact nature of computer algebra computations.

Given that there's more work to be done, we believe this is a step in the right direction ot
augmenting the scientific method using modern tooling.

--------------------
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