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Key Question:  

How have we utilized modern 
mathematics and technology in 
this process?

Observing Phenomena  
Hardware and technology 
developed for extending 
our observational 
capacity and ability to 
gather data.

Hubble Telescope 
generates hundreds 
of gigabytes of data 
per month. 

Large Hadron Collider    
generates data for 
the study of particle 
physics. 
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The Scientific Method
Key Question:  

How have we utilized modern 
mathematics and technology in 
this process?
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The Scientific Method
Traditional Discovery 

Discovering from first principles 
and testing on data. 

Strengths:  

1. We (generally) find 
encodings of phenomena 
that are explainable from 
theory.  

2. Proposed hypotheses are 
(generally) quick to test on 
data (if it exists). 

Limitations:  

Coming up with new theories is 
challenging to do manually.
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The Scientific Method

“The  number of researchers required today to achieve the 
famous doubling of computer chip density is more than 18 times 

larger  than the number required in the early 1970s.” 
Bloom et al., Are Good Ideas Getting Harder to Find?, American 

Economic Review, 2020

Traditional Discovery 

Discovering from first principles 
and testing on data. 

Strengths:  

1. We (generally) find 
encodings of phenomena 
that are explainable from 
theory.  

2. Proposed hypotheses are 
(generally) quick to test on 
data (if it exists). 

Limitations:  

Coming up with new theories is 
challenging to do manually.



The Scientific Method
Data-Driven Methods 

Discovering from data (E.g AI Feynman, 
Udrescu and Tegmark 2020) 

Strengths:  

1. Effective when large datasets are 
available 

2. Little to no domain knowledge required. 
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The Scientific Method
Data and Background Theory Methods 

AI Descartes [Christina Cornelio, et al. Nature 
Comms, 2023] 

Fit to data, then test on background theory 

Strengths:  

1. Can work with small datasets. 

2. Recover a certificate of derivability from 
axioms along with hypothesis. 
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The Scientific Method

Unified Methods 

AI Hilbert [Ryan Cory-Wright, et al. Nature 
Comms, 2024] 

Fit to both theory and background data 
simultaneously using polynomial optimization  

Strengths:  

1. Simultaneously fit to data along with 
generating certificates of derivability 

2. Discovered solutions are provably optimal
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Key Question:  

How have we utilized modern 
mathematics and technology 
in this process? 

Answer: 

For most of the modern 
scientific process, we get a lot 
of  mileage from 
computational tools and 
modern technology.  

But what about using our new 
hypotheses to re-examine the 
theory that we have?

Engineering + Software
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Revisiting Assumptions: 

The problem with data driven 
systems is that they can 
generate formulae that are 
difficult to interpret or are not 
consistent with theory. 

The data+background theory 
methods generate formulae 
that are derivable from known 
theory. 

But often times theories can 
be incorrect or incomplete! 

Engineering + Software
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Revisiting Assumptions: 

The problem with data driven 
systems is that they can 
generate formulae that are 
difficult to interpret or are not 
consistent with theory. 

The data+background theory 
methods generate formulae 
that are derivable from known 
theory. 

But often times theories can 
be incorrect or incomplete! 

Examples: 

1. Cosmology - e.g Lithium Abundance 

2. Historic example: Perihelion Precession of Mercury 



The Scientific Method
Data-Driven Methods 

Discovering from data (E.g AI Feynman, 
Udrescu and Tegmark 2020) 

Limitations:  

May fail to be consistent with theory. Less 
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The Scientific Method
Data and Background Theory Methods 

AI Descartes [Christina Cornelio, et al. Nature 
Comms, 2023] 

Limitations: 

We primarily use background theory for 
verification, not search. Verification only works 
when the background theory is sufficient.
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The Scientific Method
Unified Methods 

AI Hilbert [Ryan Cory-Wright, et al. Nature 
Comms, 2024] 

Limitations: 

Only works with systems expressible as 
polynomials. For derivability certificates, we 
require axiom systems which contain complete 
information.
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Hypothesis generation methods can either 
result in expressions for phenomena that 
are not consistent with theory or are only 
verifiable if the background theory is 
complete.  
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The Scientific Method - Our Contribution
Key Question for our work 

When theory is inconsistent or 
incomplete and cannot 
explain a phenomenon, can 
we generate corrections in an 
automated way? 

Contribution: An automated 
method of generating 
candidates for axioms that 
explain discovered 
phenomena.
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AI Hilbert 

Assumption: all axioms are encoded as 
polynomials over some basis (traditional 
indeterminates, trig functions, exponents, etc) 

Fit to both theory and background data 
simultaneously using polynomial optimization.  
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AI Hilbert Review
Key idea: For polynomials, we can exactly describe the space of derivable functions. 

Let  denote the set of polynomial background axioms.A = {A1(x), . . . , Ak(x)}

Putinar’s Positive Stellensatz* 
A degree  polynomial  vanishes on the solution set  if and only if for some 
degree  polynomials , we have 

≤ d q(x) ℋ = {x ∈ ℝn : Ai(x) = 0 for each i}
≤ d α1(x), . . . , αk(x)

q(x) =
k

∑
i=1

αi(x)Ai(x)

Takeaway: we can express algebraic derivability from axioms as algebraic combinations of axioms!

*Putinar’s positive stellensatz is actually a very similar statement about semi algebraic sets allowing for inequalities. We cite Putinar for continuity with 
AI Hilbert, but we will use this more restricted version without inequalities. You can also see: Hilbert’s Nullstellensatz, which is the generalization of this 
statement for arbitrary degrees.  



Axioms

AI Hilbert Review
Example: Kepler’s Third Law of Planetary Motion

 

or

p =
4(d1 + d2)3

G(m1 + m2)

m1m2Gp2 − m1d1d2
2 − m2d2

1d2 − 2m2d1d2
2 = 0

 
 

 
 

d1m1 − d2m2 = 0
(d1 + d2)2Fg − Gm1m2 = 0

Fc − m2d2w2 = 0
Fc − Fg = 0
wp − 1 = 0

⟹

Instead of writing a traditional derivation of Kepler from the axioms, we could write it as the following combination

Phenomenon

 
 

 
 

−d2
2 p2w2

−p2

d2
1 p2 + 2d1d2p2 + d2p2

d2
1 p2 + 2d1d2p2 + d2p2

(pwd1d2 + d1d2)(m1d2 + m2d1 + 2m2d2)



AI Hilbert Review
Define the distance between a potential candidate hypothesis

d(q(x), A) = min
αi∈ℝn,d[x]

coeff∥q(x) −
k

∑
i=1

αi(x)Ai(x)∥

So we can solve the optimization problem

min
q∈ℝn,d[x] ∑

xi∈data
q(xi) + λd(q(x), A)

This can be computationally expensive (e.g. Radiational Gravitational Wave Equation took 640GB memory, >5 
hours on MIT SuperCloud). First motivation to bring in geometry: can we speed this up?



Phenomenon

Converting Discovery to Geometry
The discovery problem with complete theory is a projection problem. 
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d1m1 − d2m2 = 0
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Fc − m2d2w2 = 0
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FC

FG

Other Variables

Variety 

The set of solutions to a 
system of polynomial 
equations  is 

called an algebraic 
variety 

A1, . . . , Ak

V(A1, . . . , Ak)

Ideals 

The ideal generated by a 
polynomial system 

 is the set of all 
algebraic combinations. It 
is denoted .

A1, . . . , Ak

⟨A1, . . . , Ak⟩

Converting Discovery to Geometry

What this 
captures 

The solution set for 
which we will take 

projections to be the 
new search space

What this captures 

A closed form expression 
of the space of all 

phenomena that are 
algebraic consequences 

of the axioms. 



Converting Discovery to Geometry
How does this help with projection? The following facts and theorems help make this work

Fact 1: An algebraic consequence of axioms will not generate new solution points. I.e. V(A1, . . . , Ak) = V(⟨A1, . . . , Ak⟩)
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Converting Discovery to Geometry

Fact 1: An algebraic consequence of axioms will not generate new solution points. I.e. V(A1, . . . , Ak) = V(⟨A1, . . . , Ak⟩)

Fact 2: There can be multiple generating sets for the same ideal. The generators are not unique. 
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Converting Discovery to Geometry

Fact 1: An algebraic consequence of axioms will not generate new solution points. I.e. V(A1, . . . , Ak) = V(⟨A1, . . . , Ak⟩)

Fact 2: There can be multiple generating sets for the same ideal. The generators are not unique. 

Elimination Theorem 
There exists a unique generating set, called a Gröbner Basis,  of  such that  

 
𝒢 = {g1, . . . , gM} ⟨A1, . . . , Ak⟩

⟨A1, . . . , Ak⟩ ∩ ℝ[x1, . . . , xr] = {g1, . . . , gM} ∩ ℝ[x1, . . . , xr]

FC

FG

Other Variables

How does this help with projection? The following facts and theorems help make this work



If theory is sufficient,  

Converting Discovery to Geometry
This gives us the following options: 

Theory 
Axiom 1 
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Data
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  Hypothesis 2

If theory is 
insufficient

Hypothesis 1 
  Hypothesis 2

Run 
Projection

Projection to 
reduce the 

search space, 
AI Hilbert

Projection / Projection + AI Hilbert



Converting Discovery to Geometry - Results
What this does for us: we can achieve a reduction in LP size and therefore speedup for AI Hilbert. 
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Abductive Inference

p =
4(d1 + d2)3
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Abductive Inference

p =
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(d1 + d2)2Fg − m1m2 = 0
Fc − m2d2w2 = 0
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Data

Abductive Inference

p =
4(d1 + d2)3

(m1 + m2)

 

 

 

(d1 + d2)2Fg − m1m2 = 0
Fc − m2d2w2 = 0

Fc − Fg = 0
wp − 1 = 0



Data

Abductive Inference

p =
4(d1 + d2)3

(m1 + m2)

 

 

 

(d1 + d2)2Fg − m1m2 = 0
Fc − m2d2w2 = 0

Fc − Fg = 0
wp − 1 = 0

(d1 + d2)2Fg − m1m2 = 0



Data

Abductive Inference

p =
4(d1 + d2)3

(m1 + m2)

 

 

 

(d1 + d2)2Fg − m1m2 = 0
Fc − m2d2w2 = 0

Fc − Fg = 0
wp − 1 = 0

(d1 + d2)2Fg − m1m2 = 0

Aim: Given a polynomial phenomenon  and a polynomial axiom system  which does not derive , 
generate a list of candidate polynomials  such that  do prove  for each . 

Q A1, . . . , Ak−1 Q
{ ̂Ai

k} A1, . . . , Ak−1, ̂Ai
k Q i

Constraints: 
1. We assume we do not have any data for  (otherwise this would be equivalent to hypothesis generation 

and we could fit to data)  
2. We assume no knowledge about the exact variables over which  is defined other than it is defined over a 

subset of variables of the entire system (otherwise we could either gather data or project varieties as before) 
3. We assume that  is “simpler” than  - we will make this more precise in a few slides. This is to avoid the 

trivial case .  

4. We will generalize to multiple missing axioms, but for now still stick to one for illustration.

Ak

Ak

Ak Q
Ak = Q



Abductive Inference
Key idea: Reducibility introduced by  to the known axioms tells us about residuals.Q

V(y − x2) V(x + y + z − 1) V(xy − 1) V(x − y, x2 + y2 − z)

Irreducible Varieties 
       A variety  is irreducible if it cannot be written as the union of two smaller varieties.V



Abductive Inference
Key idea: Reducibility introduced by  to the known axioms tells us about residuals.Q

Irreducible Varieties and Reducible Varieties 
       A variety  is irreducible if it cannot be written as the union of two smaller varieties. It is reducible otherwise.V

V(y2 − x2) V(z, ((x − 1)2 + y2 − 1) ⋅
((x + 1)2 + y2 − 1))

V((z − x2)(z − y2))



Abductive Inference
Key idea: Reducibility introduced by  to the known axioms tells us about residuals.Q

Observation 
       We can intersect irreducible varieties to obtain reducible varieties. 

V(z − x2 − y2)

V(z − y2 − 1)

⋂



Abductive Inference
Key idea: Reducibility introduced by  to the known axioms tells us about residuals.Q

Let’s assume we have  and . Then: 

  

If  for unknown  and an unknown , then .  

 

If the residual  is non trivial (i.e  contains some non trivial components in ) then 

introducing  introduces reducibility directly related to  and .

V(A1, . . . , Ak−1) V(Q)

V(A1, . . . , Ak−1) ∩ V(Q) = V(A1, . . . , Ak−1, Q) = V(⟨A1, . . . , Ak−1, Q⟩)

Q =
k

∑
i=1

αiAi αi Ak ⟨A1, . . . , Ak−1, Q⟩ = ⟨A1, . . . , Ak−1, αkAk⟩

V(A1, . . . , Ak−1) ∩ V(Q) = V(⟨A1, . . . , Ak−1, Q⟩) = V(⟨A1, . . . , Ak−1, αkAk⟩) = V(A1, . . . , Ak−1) ∩ V(αkAk)

αkAk Q A1, . . . , Ak−1

Q αk Ak

Observation 
       We can intersect irreducible varieties to obtain reducible varieties. 



Abductive Inference
Aim: 

       Given the axioms  and phenomenon , study the irreducible components of .A1, . . . , Ak−1 Q V(A1, . . . , Ak−1, Q)

Idea: 
Remove the components of  in the  directions by looking at the irreducible 

components of . 

Analogy: PCA

Q A1, . . . , Ak−1

V(A1, . . . , Ak−1, Q)



Abductive Inference
Aim: 

       Given the axioms  and phenomenon , study the irreducible components of .A1, . . . , Ak−1 Q V(A1, . . . , Ak−1, Q)

Idea: 
Remove the components of  in the  direction by looking at the irreducible 

components of . 

Analogy: PCA 

Simplicity criterion: We want candidates for  which explain  that result in minimal 

residuals with respect to . 

Q A1, . . . , Ak−1

V(A1, . . . , Ak−1, Q)

Ak Q
A1, . . . , Ak−1



Abductive Inference
Aim: 

       Given the axioms  and phenomenon , study the irreducible components of .A1, . . . , Ak−1 Q V(A1, . . . , Ak−1, Q)

Concern 1: 
       There are infinitely many polynomials that could intersect to generate the irreducible component. 



Abductive Inference
Aim: 

       Given the axioms  and phenomenon , study the irreducible components of .A1, . . . , Ak−1 Q V(A1, . . . , Ak−1, Q)

Hilbert’s Basis Theorem: 
       Any every ideal  in  has a finite set of generators I ℝ[x] I = ⟨F1, . . . . , Fr⟩



Abductive Inference
Aim: 

       Given the axioms  and phenomenon , study the irreducible components of .A1, . . . , Ak−1 Q V(A1, . . . , Ak−1, Q)

Concern 2: 
       We need a computational way of finding the irreducible components of .V(A1, . . . , Ak−1, Q)



Abductive Inference
Aim: 

       Given the axioms  and phenomenon , study the irreducible components of .A1, . . . , Ak−1 Q V(A1, . . . , Ak−1, Q)

Key Theorem: Lasker-Noether Primary Decomposition Theorem 
       ~ Every variety  can be written as a union of irreducible varieties  V(I) ⋃Vi



Abductive Inference - Our System

Hypothesis  

Q

Theory  

A1, . . . , Ak−1

Variety  
V(A1, . . . , Ak−1, Q)

Decomposition  

⋃Vi

For each 

generator  of  , test if 

 proves  

̂Aj
k Vi

A1, . . . , Ak−1,
̂Aj
k Q

FC
FG

Other Variables

If it does, add  
to a list of candidates

̂Aj
k

Candidate set
 that 

provably explains 
{Aj

k}

Q



Results - Single Missing Axiom
Kepler’s Third Law of Planetary Motion

PhenomenonAxioms

⟹ p =
4(d1 + d2)3

(m1 + m2)

 

 

 

(d1 + d2)2Fg − m1m2 = 0
Fc − m2d2w2 = 0

Fc − Fg = 0
wp − 1 = 0



Kepler’s Third Law of Planetary Motion 

We know from AI Feynman and AI Hilbert and other systems that with data, we can still recover 
Kepler’s Law. 

Results - Single Missing Axiom

PhenomenonAxioms

⟹ p =
4(d1 + d2)3

(m1 + m2)

 

 

 

(d1 + d2)2Fg − m1m2 = 0
Fc − m2d2w2 = 0

Fc − Fg = 0
wp − 1 = 0



Results - Single Missing Axiom
Kepler’s Third Law of Planetary Motion 

Computing the primary decomposition gives: 

This is the only equation in the basis that can be added to the axiom list to derive Kepler. 

PhenomenonAxioms

⟹ p =
4(d1 + d2)3

(m1 + m2)

 

 

 

(d1 + d2)2Fg − m1m2 = 0
Fc − m2d2w2 = 0

Fc − Fg = 0
wp − 1 = 0

 ⟨m2, Fg, Fc, wp − 1⟩

⟨Fc − Fg, wp − 1,m1p2 − d2
1d2 − 2d1d2

2 − d3
2 , Fgp − wm2d2, Fgp2 − m2d2, Fg(d1 + d2)2 − m1m2⟩



Results - Single Missing Axiom
Kepler’s Third Law of Planetary Motion 

Computing the primary decomposition gives:

PhenomenonAxioms

⟹ p =
4(d1 + d2)3

(m1 + m2)

 

 

 

(d1 + d2)2Fg − m1m2 = 0
Fc − m2d2w2 = 0

Fc − Fg = 0
wp − 1 = 0

 

 

 

 

⟨m2, Fg, Fc⟩
⟨d2, m1, Fg, Fc⟩

⟨m1, Fc − Fg, (d1 + d2)2, Fg − w2m2d2⟩
⟨Fc − Fg, wp − 1, m1p2 − d2

1d2 − 2d1d2
2 − d3

2 , Fgp2 − m2d2, Fg(d1 + d2)2 − m1m2⟩
⟨Fc − Fg, wp + 1, m1p2 − d2

1d2 − 2d1d2
2 − d3

2 , Fgp2 + m2d2, Fg(d1 + d2)2 − m1m2⟩



Results - Single Missing Axiom
Kepler’s Third Law of Planetary Motion 

Looking at the last two components, which contain polynomials that can be used to derive Kepler: 

Why ? Because in the algebraic combination , it turns out .wp + 1 Q =
4

∑
i=1

αiAi α4 = wp + 1

PhenomenonAxioms

⟹ p =
4(d1 + d2)3

(m1 + m2)

 

 

 

(d1 + d2)2Fg − m1m2 = 0
Fc − m2d2w2 = 0

Fc − Fg = 0
wp − 1 = 0

 ⟨Fc − Fg, wp − 1, m1p2 − d2
1d2 − 2d1d2

2 − d3
2 , Fgp2 − m2d2, Fg(d1 + d2)2 − m1m2⟩

⟨Fc − Fg, wp + 1, m1p2 − d2
1d2 − 2d1d2

2 − d3
2 , Fgp2 + m2d2, Fg(d1 + d2)2 − m1m2⟩



Einstein’s Relativistic Time Dilation Law 

Phenomenon
Correct Axioms

⟹
 

 

 

 

cdt0 − 2d = 0
cdt − 2L = 0

L2 = d2 + v(dt/2)2

f0 = 1/dt0
f = 1/dt

f − f0
f

= 1 −
v2

c2
− 1

Incorrect Axioms
 

 

 

 

cdt0 − 2d = 0
dt = 2L/ v2 + c2

L2 = d2 + v(dt/2)2

f0 = 1/dt0
f = 1/dt

⟹
Phenomenon

f − f0
f

= 1 −
v2

c2
− 1

We know that both AI Descartes and AI Hilbert discover the correct formula 
regardless of theory, and can select the correct axiom. 

Results - Single Missing Axiom



Einstein’s Relativistic Time Dilation Law 

Phenomenon
Correct Axioms

⟹
 

 

 

 

cdt0 − 2d = 0
cdt − 2L = 0

L2 = d2 + v(dt/2)2

f0 = 1/dt0
f = 1/dt

f − f0
f

= 1 −
v2

c2
− 1

Incorrect Axioms
 

 

 

 

cdt0 − 2d = 0
dt = 2L/ v2 + c2

L2 = d2 + v(dt/2)2

f0 = 1/dt0
f = 1/dt

⟹
Phenomenon

f − f0
f

= 1 −
v2

c2
− 1

Even if the system is incomplete, both systems can correctly recover the law.

Results - Single Missing Axiom



 

 

 

 

cdt0 − 2d = 0
cdt − 2L = 0

L2 = d2 + v(dt/2)2

f0 = 1/dt0
f = 1/dt

Einstein’s Relativistic Time Dilation Law 

Incorrect Axioms

⟹
Phenomenon

f − f0
f

= 1 −
v2

c2
− 1

Out system generates the following candidates for the missing axiom:

Results - Single Missing Axiom

 cdt − 2L = 0
2Lf + c = 0

If we had no information about the speed of light, we recover that the speed 
of light must be constant.



Results - Single Missing Axiom



Results - Multiple Missing Axioms

PhenomenonAxioms

⟹ p =
4(d1 + d2)3

(m1 + m2)

 

 

 

(d1 + d2)2Fg − m1m2 = 0
Fc − m2d2w2 = 0

Fc − Fg = 0
wp − 1 = 0

What if we’re missing more axioms or need to make more corrections? 

 

 

 

⟨m2, Fc, (d1 + d2)2⟩
⟨m1, (d1 + d2)2, Fc − w2m2d2⟩

⟨m2, Fg, Fc⟩
⟨m1p2 − d2

1d2 − 2d1d2
2 − d3

2 , Fgp2 − m2d2, Fg(d1 + d2)2 − m1m2, Fc − w2m2d2⟩

We don’t seem to recover the two missing axioms. Question: What are the criteria for derivability?



Results - Condition for Derivibility
Theorem: 

    For ideals , if  and , then  and  share a common irreducible component. I, J dim I = dim J I ⊆ J V(I) V(J)

Missing  axioms / requiring  corrections to explain  phenomena: 

Take  

Take  
Then we can recover  from the shared irreducible component if .  

Main idea: Intersecting a polynomial surface  with a variety  decreases the dimension by at most 
one. Any dimensions of information lost in  need to be made up by  to guarantee recovery. 

r r j

I = ⟨A1, . . . , Ak−r, Q1, . . . , Qj⟩
J = ⟨A1, . . . , Ak⟩

Ak−r+1, . . . , Ak dim I = dim J

V(Ai) V(A1, . . . , Ai−1)
Ak−r+1, . . . , Ak Q1, . . . , Qj



Missing  axioms / requiring  corrections to explain  phenomena: 

Take  

Take  
Then we can recover  from the shared irreducible component if .  

Main idea: Intersecting a polynomial surface  with a variety  decreases the dimension by at most 
one. Any dimensions of information lost in  need to be made up by  to guarantee recovery. 

r r j

I = ⟨A1, . . . , Ak−r, Q1, . . . , Qj⟩
J = ⟨A1, . . . , Ak⟩

Ak−r+1, . . . , Ak dim I = dim J

V(Ai) V(A1, . . . , Ai−1)
Ak−r+1, . . . , Ak Q1, . . . , Qj

Results - Condition for Derivibility
Theorem: 

    For ideals , if  and , then  and  share a common irreducible component. I, J dim I = dim J I ⊆ J V(I) V(J)

This is in line with what we had before: 

If  , , then for unknown , then 

 

Q1 =
k

∑
i=1

αiAi Q2 =
k

∑
i=1

βiAi αi, βj, Ak−1, Ak

⟨A1, . . . Ak−2, Q1, Q2⟩ = ⟨A1, . . . Ak−2, γk−1Ak−1, γkAk⟩



Results - Multiple Missing Axioms

PhenomenonAxioms

⟹ p =
4(d1 + d2)3

(m1 + m2)

 

 

 

(d1 + d2)2Fg − m1m2 = 0
Fc − m2d2w2 = 0

Fc − Fg = 0
wp − 1 = 0

But we still recover some information!

 

 

 

⟨m2, Fc, (d1 + d2)2⟩
⟨m1, (d1 + d2)2, Fc − w2m2d2⟩

⟨m2, Fg, Fc⟩
⟨m1p2 − d2

1d2 − 2d1d2
2 − d3

2 , Fgp2 − m2d2, Fg(d1 + d2)2 − m1m2, Fc − w2m2d2⟩



Results - Multiple Missing Axioms

PhenomenonAxioms

⟹ p =
4(d1 + d2)3

(m1 + m2)

 

 

 

(d1 + d2)2Fg − m1m2 = 0
Fc − m2d2w2 = 0

Fc − Fg = 0
wp − 1 = 0

But we still recover some information! 

Axiom 2:  
Inferred : 

Fc − m2d2w2 = 0
Fgp2 − m2d2 = 0

⟨m1p2 − d2
1d2 − 2d1d2

2 − d3
2 , Fgp2 − m2d2, Fg(d1 + d2)2 − m1m2, Fc − w2m2d2⟩

We have discovered a reformulation of centrifugal force with 
 swapped in. Fc = Fg, w = 1/p



Results - Multiple Missing Axioms

PhenomenonAxioms

⟹ p =
4(d1 + d2)3

(m1 + m2)

 

 

 

(d1 + d2)2Fg − m1m2 = 0
Fc − m2d2w2 = 0

Fc − Fg = 0
wp − 1 = 0

One step further: Missing 3 out of 4 axioms. 

Inferred: Fgp2 − m2d2 = 0

⟨m1p2 − d2
1d2 − 2d1d2

2 − d3
2 , Fgp2 − m2d2, Fg(d1 + d2)2 − m1m2⟩

This time, without knowing anything about centrifugal force, we recover 
the centrifugal force equation with  swapped inFc = Fg, w = 1/p



Results - Multiple Missing Axioms



Results - Multiple Missing Axioms



Results - Multiple Missing Axioms



Limitations, Ongoing, and Future Work

1. Polynomials: We are currently restricted to polynomials (including traditional polynomials, trig 
polynomials, etc). We cannot handle ODEs / PDEs (yet).  

2. Sensitive to noise: This method is somewhat sensitive to noisy in coefficients of phenomena 
polynomials due to the exact nature of computer algebra computations. 

Given that there’s more work to be done, we believe this is a step in the right direction of 
augmenting the scientific method using modern tooling.  

Known

Theory
Hypothesis

Test on 
theory

Infer new 
axioms

Theory 2.0 ⟹
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