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Problem Statement

Given an N x N finite integer 
lattice, what’s the size of the 
largest subset such that no 

three points form an 
isosceles triangle? 



Problem Statement

Aim: To use machine learning to generate best 
known examples, beat current bounds, explore 

how we can gain insights.
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• Next Steps
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Math setting: Ordinal Embeddings

Problem of non-metric multidimensional scaling:  
Given an integer , a metric space , and a set  of ordered tuples  , find an 
embedding  

 

    such that for each ,  

n (M, d) Σ (i, j, k, l) ∈ [1...n]4
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Math setting: Ordinal Embeddings

Problem of non-metric multidimensional scaling:  
Given an integer , a metric space , and a set  of ordered tuples  , find an 
embedding  

 

    such that for each ,  

n (M, d) Σ (i, j, k, l) ∈ [1...n]4

[1...n] ↦ (x1, . . . , xn) ∈ M

(xi, xj, xk, xl) ∈ Σ
d(xi, xj) < d(xk, xl)

We will restrict ourselves to the case where every tuple in  is of the form . We call constraints of this form 
Triplet Comparisons

Σ (i, j, i, k)
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Math setting: non-metric vs classical MDS

Classical MDS Non-Metric MDS

- Have the pairwise distances between the points 

Consider M = ℝd

- Have all possible triplet comparisons 

d(x
, y)

d(x, z)
d(x, y) > d(x, z)?

Know: The location of the points up to 
distance preserving affine linear transformation

If  satisfies all constraints in , so does 
some perturbation of 

(x1, . . . , xn) Σ
(x1, . . . , xn)
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 …………………………………………………………………………………………………………………… 

Need: A way to compare to points satisfying the same triplet comparisons and establish a metric. 
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A function on metric spaces   is weakly isotonic if for every , we have  

   if and only if    

f : M → N m, m′ , m′ ′ ∈ M

dM(m, m′ ) < dM(m, m′ ′ ) dN( f(m), f(m′ )) < dN( f(m), f(m′ ′ ))

We say that two -tuples  and  in an ambient metric space  are weakly isotonic if the 
induced map on the metric spaces  

 
is weakly isotonic. 

n x = (x1, . . . , xn) y = (y1, . . . , yn) M

{x1, . . . , xn} → {y1, . . . , yn}

x1

x2

x3 y1

y2
y3
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Math setting: Definitions - Distance metrics

A similarity of a metric space  is a homeomorphism  which multiplies all distances by a scalar.  M A : M → M

For -tuples , we denote  over  

Note: if there is a similarity that maps  to , then  and  are weakly isometric. 

Final Distance Metric: 

n x, y ∈ Mn d∞(x, y) := max
i

dM(xi, yi) i ∈ [1,...,n]

x y x y

min
A

d∞(x, Ay)
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Math setting: First proposition

Proposition [J. Ellenberg, L. Jain, 2019]  

For tuples , if we have that: 

•  
•  and  are weakly isotonic 

Then there exists a similarity  such that 

x = (x1, . . . , xn), y = (y1, . . . , yn) ⊂ [0,1]

δH(x, [0,1]) ≤ α
x y

A d∞(x, Ay) = Oϵ(α1−ϵ)

x
0 10.3

x

α = 0.7
α =

1
3

The Hausdorff Condition: There are no large gaps 

Question: How optimal is ? Turns out, almost optimal!Oϵ(α1−ϵ)



Math setting: Proposition 2

Proposition [J. Ellenberg, L. Jain, 2019]  

For tuples , if we have that: 

•  
•  and  are weakly isotonic 

Then there exists a similarity  such that 

x = (x1, . . . , xn), y = (y1, . . . , yn) ⊂ [0,1]

δH(x, [0,1]) ≤ α
x y

A d∞(x, Ay) = Oϵ(α1−ϵ)

Proposition 2 [J. Ellenberg, L. Jain, 2019]  

For sufficiently small , there exist tuples  such that  

•  
•  and  are weakly isotonic 

With  for every similarity .

α x = (x1, . . . , xn), y = (y1, . . . , yn) ⊆ [0,1]

δH(x, [0,1]) ≤ α
x y

d∞(x, Ay) = Ωϵ(α1+ϵ) A
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Theorem [Graham, Ron 2006] 
For every positive integer , there exists a subset  of  such that 
•  with  for some absolute constant  
•  has no 3 terms in arithmetic progression 
•  has no gaps between successive terms of size greater than 

k S ℤ
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S
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•  with  for some absolute constant  
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•  has no gaps between successive terms of size greater than 
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S ⊂ [1,M] M ≥ kc log k c
S
S k

Take  be the set of points . With , we have that 

  

Given  has no 3-term arithmetic progression, for each triplet  we have  
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Math setting: Proof of Proposition 2
Given  has no 3-term arithmetic progression, for each triplet  we have  

  
Since , we get 

S xi, xj, xk
2xk − xi − xj ≠ 0

x ⊂ (1/M)ℤ

|2xk − xi − xj | ≥
1
M

0 11 M

1

ℤ (1/M)ℤ

1/M
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Given  has no 3-term arithmetic progression, for each triplet  we have  

  
Since , we get 

 

Therefore, if  satisfies 

 

for each , then  is weakly isotonic to . 
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2xk − xi − xj ≠ 0
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|2xk − xi − xj | ≥
1
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y = (y1, . . . , y|S|)

|yi − xi | <
1

2M

i y x



Math setting: Proof of Proposition 2
Given  has no 3-term arithmetic progression, for each triplet  we have  

  
Since , we get 

 

Therefore, if  satisfies 

 

for each , then  is weakly isotonic to . Note that 

 

which means that  is .  

S xi, xj, xk
2xk − xi − xj ≠ 0

x ⊂ (1/M)ℤ

|2xk − xi − xj | ≥
1
M

y = (y1, . . . , y|S|)

|yi − xi | <
1

2M

i y x

α =
k

2M
≤

k
2kc log k

=
1
2

k1−c log k

1
M

≤ k−c log k Ω(α1+ϵ)
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Math setting: Proof of Proposition 2
Need to construct  such that  for any similarity .  

Pick . Then take  for some  on the 
order .  

This gives us that . 

Pick . Then take . For every other 
 we’ll take .

y d∞(x, Ay) = Ω(α1+ϵ) A

xi, xi+1 such that  |xi − xi+1 |  are of order α yi = xi − β, yi+1 = xi+1 + β β
α1+ϵ

d∞(x, y) ≥ β

xj, xj+1 such that  |xj − xj+1 |  are of order α yj = xj − β, yj+1 = xj+1 + β
k ≠ i, j, i + 1,j + 1 yk = xk

0 1

yi yi+1 yj yj+1
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Need to construct  such that  for any similarity .  

Given a similarity  of , if we have that , then we would need  and .  
So  has a fixed point between  and . But the same is true for  and . 

y d∞(x, Ay) = Ω(α1+ϵ) A

A ℝ d∞(x, Ay) < β Ayi > yi Ayi+1 < yi+1
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Math setting: Proof of Proposition 2
Need to construct  such that  for any similarity .  

Given a similarity  of , if we have that , then we would need  and .  
So  has a fixed point between  and . But the same is true for  and . 

By contradiction, we have that  

y d∞(x, Ay) = Ω(α1+ϵ) A

A ℝ d∞(x, Ay) < β Ayi > yi Ayi+1 < yi+1
A xi xi+1 yj yj+1

d∞(x, Ay) ≥ β = Ω(α1+ϵ)

0 1

yi yi+1 yj yj+1
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then for some similarity  of , we have 
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Math setting: What do we know about higher dimensions?

Theorem [J. Ellenberg, L. Jain 2019] 

Let . For  be a subset of  where the  are chosen uniformly at random from 
the Euclidean ball of size  around . Then the probability that  is isotonic to  is bounded above by   
for some constant .

x = (x1, . . . , xn) ⊂ [0,1]d y = (y1, . . . , yn) ℝd yi
β > n−1 xi y x exp(−cn)

c > 0

Theorem [Arias-Castro 2015] 

Let  be a bounded, connected, open domain in ,  is a tuple such that , and  is weakly isotonic to , 
then for some similarity  of , we have 

U ℝd x δH(x, U) ≤ α y x
A ℝd

d∞(x, Ay) = O(α 1
2)



Math setting: What do we know about higher dimensions?

But what do we need to extend proposition 2 to higher dimensions?

Proposition 2 [J. Ellenberg, L. Jain, 2019] 

0 1x

?



Math setting: Proof of Proposition 2

Theorem [Graham, Ron 2006] 
For every positive integer , there exists a subset  of  such that 
•  with  for some absolute constant  
•  has no 3 terms in arithmetic progression 
•  has no gaps between successive terms of size greater than 
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S
S k

Take  be the set of points . With , we have that 
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Math setting: Insights from the proof

Theorem [Graham, Ron 2006] 
For every positive integer , there exists a subset  of  such that 
•  with  for some absolute constant  
•  has no 3 terms in arithmetic progression 
•  has no gaps between successive terms of size greater than 

k S ℤ
S ⊂ [1,M] M ≥ kc log k c
S
S k

Take  be the set of points . With , we have that 

  

Given  has no 3-term arithmetic progression, for each triplet  we have  
 

x = (x1, . . . , x|S|) {s/M : s ∈ S} ⊂ [0,1] α = k/2M

δH(x, [0,1]) ≤ α

S xi, xj, xk
2xk − xi − xj ≠ 0

0 1x 0 1

xi xk xj

•  has no 3 terms in arithmetic progressionS
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Math setting: Insights from the proof

0 1

xi xk xj

Case: M = [0,1]

Needed large set with no 3 term arithmetic progression

Case: M = [0,1]d

Needed large set with no 3 points forming an isosceles triangle

Question: What’s the size of the largest subset  of an x  integer lattice?S N N
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Current known bounds: Lower Bound

Theorem [A. Wagner 2023] 

Let  be the largest subset of an x  lattice that contains no isosceles triangles, then we have that  S N N

|S | = Ω(
N

log N
)
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Current known bounds: Lower Bound
Proof:  
Let x  grid and  is the set of points at a distance  from .  
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Current known bounds: Lower Bound

 

Fact:  for a constant   

So we get for fixed , 
 

For a constant .

P(∃k : |A ∩ dk(v) | ≥ 2) ≤ p2
2N2

∑
k=1

r2(k)2

∑
k≤N

r2(k)m ≤ CmN(log N)2m−1−1 Cm

v
P(∃k : |A ∩ dk(v) | ≥ 2) ≤ Cp2N2 log N

C
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Current known bounds: Lower Bound
Call a vertex  bad if it is in  and there are two points in  at the same distance from . Then, we have 

 

Let  be the set of bad vertices. Then, 

 

Then,  

Taking  where  is a small enough constant only depending on , we get 

 

for an absolute constant .

v A A v

P(v is bad) = p ⋅ P(∃k : |A ∩ dk(v) | ≥ 2) ≤ Cp3N2 log N

B

𝔼( |B | ) = ∑
v∈grid

P(v is bad) ≤ Cp3N4 log N

𝔼( |A − B | ) = 𝔼( |A | ) − 𝔼( |B | ) ≥ N2p − Cp3N4 log N

p =
ϵ

N log N
ϵ C

𝔼( |A − B | ) ≥
N

log N
(ϵ − Cϵ3) ≥ ϵ′ 

N
log N

ϵ′ 
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Current known bounds: Upper Bound

Roth’s Theorem [Roth, 1953] 
Let  be the size of the largest subset of  that contain no 3-term arithmetic progressions. Then, r([N]) [1,...,N]

r([N]) = O(
N

log log N
)

Given a subset  of the x  grid of density greater than  

Then, for some , we have that the th row of  has density greater than . By Roth’s Theorem,  

contains a 3-term arithmetic progression, i.e. an isosceles triangle. 

S N N O((
N

log log N
)2)

j j S O(
N

log log N
) Sj



Current known bounds: Upper Bound
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Current known bounds: Upper Bound

Theorem [Kelley, Meka, 2023] 
Let  be the size of the largest subset of  that contain no 3-term arithmetic progressions. Then, r([N]) [1,...,N]

r([N]) ≤ 2−O((log N)c)⋅N

Theorem [Bloom, Sisask, 2023] 
Let  be the size of the largest subset of  that contain no 3-term arithmetic progressions. Then, r([N]) [1,...,N]

r([N]) ≤ exp(−c(log N)1
9)N

Final Bounds 

ϵ′ 

N
log N

≤ S ≤ exp(−c(log N)1
9)N2
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Aim
• Computationally generate large isosceles free subsets of the integer lattice 

using reinforcement learning
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algorithms using reinforcement 
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Discovering largest known capsets 
using large language models to 

search space of programs



Previous works in machine learning applied to math

Discovering connections between 
algebraic and geometric knot-

invariants with supervised learning

Finding faster matrix multiplication 
algorithms using reinforcement 

learning

Discovering largest known caplets 
using large language models to 

search space of programs

Moral: Machine learning can be good at coming up with good examples
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RL Background

Environment

What do we need? 

1. How do we gamify the problem? 

2. What kind of model to use? 

3. What is the reward function? 

We start with no heuristic information
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Algorithm Overview - Generation

?

Input 
State: 9 x 1 Vector 

Position: 9 x 1 Vector

Feed Forward Step 
3 Hidden Layers 

(128, 64, 4) 
Relu Hidden Activation 

Sigmoid Output Activation 

Note: NO TRAINING (yet)

Output 
Probability Distribution 

(Binomial)
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Algorithm Overview - Scoring

s( ⋅ ) = − (# of isosceles Δ's) + λ ⋅ (# of points)

Generate lots of games (~2000)

Score = -0.5 Score = -3.5 Score = -2



Algorithm Overview - Select Best

Score = -0.5 Score = -3.5 Score = -2

Best Games: Top k percent (Usually ~200 games, i.e. k = 10)



Algorithm Overview - Training Network

Best Games

Cross Entropy Loss 
Adam Optimizer



Algorithm Overview - Back to Generation

Cross Entropy Loss 
Adam Optimizer



Algorithm Overview - Summary

Generate Games Select Best Games Train Network
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Let  be a graph with diameter D, proximity , and distance 

spectrum , then 

G π
∂1 ≥ . . . ≥ ∂n

π + ∂⌊ 2D
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Aim: Use this algorithm to generate  
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Algorithm Background

Adapted from [Wagner, 2021]: 

Immediate Counterexample

Almost a Counterexample 
But was able to extend to counterexample

Not a Counterexample and / or not insightful

Aim: Use this algorithm to generate  
counterexamples to conjectures in combinatorics



Overview
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• Motivation: Non Metric Multidimensional Scaling 

• Key definitions and propositions  

• Known bounds for the problem 

How Reinforcement Learning can help 

• Reinforcement learning background and main algorithm 

• Current results and observations 

• Next Steps



Results

Evidence that we can do 
much better than the 
current lower bound



Results

Evidence also shows that 
we don’t talk about upper 

bounds… 
(Room for improvement 

exists)
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Things we’ve thought about along the way

Does the order of how you input the points matter? 

- Turns out no.  

What would happen if we used different model architectures? 

- Does change performance, we will see an example later 

What kind of heuristic information can we add? 

- Best boards include patterns like symmetries, fewer dominos (adjacent points), 
and more points closer to the edge



Results

For large boards 
(e.g. 64 x 64) 

Found largest 
known generations

64 x 64: 108 Points

Image and Generation by Adam Z. Wagner

With no heuristics:



What makes this difficult?



What makes this difficult?

Credit Assignment Problem: Which decision made the most difference? 

Sparse rewards: We reward the agent at the end of the game 

? ? ?



What makes this difficult?

Credit Assignment Problem: Which decision made the most difference? 

Sparse rewards: We reward the agent at the end of the game 

? ? ?

? ?



What makes this difficult?

Credit Assignment Problem: Which decision made the most difference? 

Sparse rewards: We reward the agent at the end of the game 

Reward function design.

? ? ?

? ?
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• Motivation: Non Metric Multidimensional Scaling 

• Key definitions and propositions  

• Known bounds for the problem 

How Reinforcement Learning can help 

• Reinforcement learning background and main algorithm 
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Next Steps

1. Activation Thresholding

Generate games until you get enough above an activation threshold ( ) σ

Score > σ Score < σ Score < σScore > σ Score > σ

Generate ~2000 games



Next Steps

2. Set up the game differently: 

?

??

??

?
? ? ?

?
?

??
?

???

?
?

? ?
? ?

?
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3. Inductive Thinking - Transfer Learning

n = 3 n = 6



Next Steps

4. Experimenting more extensively with other architectures

Different Architectures for NNs Transformers



Improvements

For large boards 
(e.g. 64 x 64) 

Found largest 
known generations

64 x 64: 108 Points

Image and Generation by Adam Z. Wagner

With Heuristics:

110 Points



Next Steps

4. Experimenting more extensively with other architectures

FunSearch

Uses a large language model 
instead of a classical neural 

network

Searches space of generating 
programs instead of examples

Potentially a way to get more 
interpretable examples



Currently Ongoing Progress

1. Set Up Game Differently - Learn entire board at once 

2. Activation Thresholding 

3. Inductive Thinking - Transfer Learning 

4. Experiment with different architectures - Other NNs or Transformers
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