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(NNs, Transformers, SR)

Automated 
Reasoning 

Automated theorem 
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tools to auto formalize 
and verify knowledge.

Data + Reasoning 
Iterated 

We can take functional 
forms learned on data and 

test on theory to study 
outputs. (AI Descartes)

Data + 
Reasoning Integrated 
Integrating both data 

and theory in the search 
process can improve 

search (AI Hilbert)
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generate examples? 
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Motivating Example 2

Question: If you had no prior information, how would you use some of the techniques we have seen so far to 
generate examples? 

Key features:  

• Hard to solve (exponential in  via brute force) 
• Easy to verify  
• No data available

n2
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How might we approach this?

Data-Driven 
Methods

Neural Networks

Transformers

Advantage of neural-network approaches:  

- Universal function approximators - so they can learn various kinds of functions. 

- Can discover lots of internal structure in data. 

- Architecture scales for the problems in higher dimensions and degrees well. 

Problem 

These examples are hard to come up with. So we have very little training data!

Solution 
Self Improvement



Approach 1: Reinforcement Learning

Spot, Boston Dynamics[3]. AlphaZero, DeepMind[4].

Reinforcement Learning 

A self improvement approach to 
machine learning where we need to 
learn tasks for which we have little to 

no data.

One step lower 

Aim: To train an agent with no prior 
knowledge to learn a policy for taking 
actions in the environment in order to 

maximize a reward and achieve a 
goal.
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Results

Approach 1: Reinforcement Learning

N 3 4 5 6 10 15 64

Size 4 6 7 9 12 17 80

Seems 
better than known 

lower bound  

Size >
cN
log N
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Algorithm Background

Immediate Counterexample

Almost a Counterexample 
But was able to extend to counterexample

Not a Counterexample and / or not insightful

Aim: Use this algorithm to generate  
counterexamples to conjectures in combinatorics

Adapted from work by Adam Wagner[5]: 
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Alternative: Use a transformer + local search instead[6] 

Results[6]

Approach 1: Reinforcement Learning

N=64


Size = 108

Drawback: These results are great, but they 
are hard to draw insights from!



Traditional Neural Approaches have drawbacks.

Data-Driven 
Methods

Neural Networks

Transformers

Drawback 

1. Results are usually less interpretable. The 
mechanism behind the generation is difficult to 
understand. 

2. For different input sizes, we might have to 
train a new model. So difficult to test 
generalization.  
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FunSearch Generating 
Algorithms

Change of Approach: Functions to Algorithms



Aim: Train a large language model to generate code that we can use to 
construct examples.

For the purposes of this talk, we will follow the work on FunSearch, by DeepMind[8]
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Given the Capset problem, we can represent the solution to the problem in two ways. 



Algorithms and LLMs

(0,0)

(2,2)(2,1)(2,0)

(0,1) (0,2)

(1,0) (1,1) (1,2)

Given the Capset problem, we can represent the solution to the problem in two ways. 

Via a set of points
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Need to be careful: LLMs by themselves cannot solve complex reasoning tasks. Solutions may not 
be plausible / might hallucinate

GPT4o attempt at solving 
the isosceles free 

problem for n=64 with 
chain of thought 

reasoning.
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(1,0) (1,1) (1,2)

Given the Capset problem, we can represent the solution to the problem in two ways. 

Via a set of points Via an algorithm

Advantage of expressing as an algorithm: 

1. We can verify the correctness of an algorithm quickly (evaluation is easy) 

2. We can test the generating mechanism on cases out of the training distribution (can study 
generalization)



Algorithms and LLMs

Key tool for generating code: Large Language Models.  

Large Language Models have shown widespread success in code generation. Example below: 
Evaluation of various models on the HumanEval and MBPP benchmarks[6]. 



Algorithms and LLMs

Key tool for generating code: Large Language Models.  

Large Language Models have shown widespread success in code generation. Example below: 
Evaluation of various models on the HumanEval and MBPP benchmarks[6]. 

So…. can we just get GPT to 
write us a script to solve it?



Algorithms and LLMs

Need to be careful: LLMs by themselves cannot just solve complex reasoning tasks.

GPT4o one-shot attempt at writing code to generate an algorithm that generates isosceles-free sets. While a human might not 
have written that example by hand, the code shows that it’s a greedy algorithm! One could have certainly done that!



Funsearch Overview

Key features of our problems:  



Funsearch Overview

Key features of our problems:  
• Easy to verify - We can build a filter for incorrect / bad programs



Funsearch Overview

Key features of our problems:  
• Easy to verify - We can build a filter for incorrect / bad programs 
• No data available - We will rely on some self improvement 



Funsearch Overview

Key features of our problems:  
• Easy to verify - We can build a filter for incorrect / bad programs 
• No data available - We will rely on some self improvement 
• Smooth Scoring - We can make gradual improvements to the code



Funsearch Overview

Key features of our problems:  
• Easy to verify - We can build a filter for incorrect / bad programs 
• No data available - We will rely on some self improvement 
• Smooth Scoring - We can make gradual improvements to the code

Funsearch



Funsearch Overview

Key features of our problems:  
• Easy to verify - We can build a filter for incorrect / bad programs 
• No data available - We will rely on some self improvement 
• Smooth Scoring - We can make gradual improvements to the code

Funsearch Code Samples



Funsearch Overview

Key features of our problems:  
• Easy to verify - We can build a filter for incorrect / bad programs 
• No data available - We will rely on some self improvement 
• Smooth Scoring - We can make gradual improvements to the code

Funsearch Code Samples Evaluation



Funsearch Overview

Key features of our problems:  
• Easy to verify - We can build a filter for incorrect / bad programs 
• No data available - We will rely on some self improvement 
• Smooth Scoring - We can make gradual improvements to the code

Funsearch Code Samples Evaluation



Funsearch Overview

Key features of our problems:  
• Easy to verify - We can build a filter for incorrect / bad programs 
• No data available - We will rely on some self improvement 
• Smooth Scoring - We can make gradual improvements to the code



Funsearch Code Improvement

The role of the Large Language Model 

Take a code that works, make a small 
improvement to it.
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Example Slide from Matej Balog CMSA talk[9]

We’ll start with a code that builds capsets (likely sub-optimally)

The role of the 
Large Language Model 

Take a code that works, make a 
small improvement to it.
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Generated by LLM

Example Slide from Matej Balog CMSA talk[9]

We’ll prompt the LLM to make an improvement in the code.

The role of the 
Large Language Model 

Take a code that works, make a 
small improvement to it.



Gives size 4 capset in dim 2

Example Slide from Matej Balog CMSA talk[9]

Gives size 2 capset in dim 2

Funsearch Code Improvement

We’ll prompt the LLM to make an improvement in the code.

The role of the 
Large Language Model 

Take a code that works, make a 
small improvement to it.
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Funsearch Code Improvement

We’ll substitute the new code in and repeat!

The role of the 
Large Language Model 

Take a code that works, make a 
small improvement to it.
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Funsearch Code Improvement

But we need to be careful: Iteratively improving the same candidate can lead to local minima.

We’ll substitute the new code in and repeat!

The role of the 
Large Language Model 

Take a code that works, make a 
small improvement to it.
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But we need to be careful: Iteratively improving the same candidate can lead to local minima. 

We want to have multiple different perturbations of the code that we can study over time.

fun v_0

Solution 
Genetic 

Evolution



Funsearch Genetic Algorithm

Earlier in the summer school, we saw an application of a genetic algorithm:



Funsearch Genetic Algorithm

In order to implement a genetic evolution algorithm, we need: 
1. An initialization of the population 
2. A mutation mechanism for each population 
3. A score to test for which species survive
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Funsearch Genetic Algorithm

Leveraging three things here: 

1. Our ability to run inference in parallel 
2. Our ability to evaluate fast in parallel 
3. LLM ‘creativity’.
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Let’s see how this works from 
input to output!



Program Specification

Funsearch Input 
We input three functions.

Solve Evolve Evaluate

This function 
is the ‘prior 

knowledge’ function 
that will build outputs 

(say, capsets) using 
the function 

funsearch designs.

This is the 
function funsearch 

will learn through the 
genetic algorithm. 

You define what the 
input features you 

want the function to 
consider and what to 

output

This function 
is the evaluator that 

determines what 
score to assign each 
program. It will first 

solve the problem 
using the solve 
function then 

evaluate the output.
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Solve

This function 
is the ‘prior 

knowledge’ function 
that will build outputs 

(say, capsets) using 
the function 

funsearch designs.



Evolve

This is the 
function funsearch 

will learn through the 
genetic algorithm. 

You define what the 
input features you 

want the function to 
consider and what to 

output

Funsearch Input



Evaluate

This function 
is the evaluator that 

determines what 
score to assign each 
program. It will first 

solve the problem 
using the solve 
function then 

evaluate the output.

Funsearch Input



Funsearch Evolution Step

def priority_1():
def priority_2():

• We will initialize some number of islands/independent databases with copies of our initial function to 
evolve. For each island, we will develop a database of program.
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Funsearch Evolution Step
• We will initialize some number of islands/independent databases with copies of our initial function to 

evolve. For each island, we will develop a database of program. 

• We repeat the evolutionary algorithm for each island for as many iterations as desired.  

• Some islands might converge to suboptimal solutions. We therefore periodically reset the islands and seed 
them with good performing programs from the surviving islands.

def priority_1():

def priority_2():

def priority_3():

def priority_4():

def priority_5():
def priority_6():

def priority_7():
def priority_8():

After many iterations

def priority_1():

def priority_2():

def priority_2():

def priority_7():

def priority_1():
def priority_7():

def priority_7():
def priority_8():



Funsearch Output and Results

• This method was used to discover the largest known Capset at size n=8. 

• This was used to extend the best known lower bound at the time from  to the now best .2.2173n 2.2202n



Funsearch Output and Results 

Priority function that is 
used to generate the 
largest known capset 

for n=8.



Funsearch Output and Results 

Shorter code was 
found later using the 

same method 



Funsearch Output and Results 
• What about the isosceles free subset problem?



Funsearch Output and Results 
• Results on this will follow our recent arXiv submission[10].

Built a working, open source 
implementation of funsearch 

designed for working 
mathematicians

Tested the capabilities of funsearch 
on various models

Studied results for funsearch on 
the isosceles free problem - 

focussing on generalization outside 
the training set. 



Funsearch Output and Results 

We can design a very 
similar program specification! 

The solve function is almost 
the exact same - a greedy 

algorithm moving in order of 
high to low priority weights 

assigned to each node. 

The evaluation and 
initialization priority are the 

same.



• Basic models here refer to our funsearch runs with the specification files. 

• The learned models don’t outperform SOTA. However, we should note that the original funsearch paper 
reported to use that for reproducibility of some of their results, 15 instances of StarCoder-15B running on 
A100 40 GB GPU each and 5 CPU servers (each running 32 evaluators in parallel) for two days, with an 
estimate that when running on Google Cloud, the price of an experiment is around $800 – $1400[8]. We ran 
trained these models for 30 minutes with ~$2 worth of tokens on mistral-tiny with an 8-core M2 MacBook.  
 
 
 
 
 
 
 
 
 
 
So what can we say about the functions?

Funsearch Output and Results 

*We had a run improve to 96 when run with GPT4o with 10x the number of tokens. 



Funsearch Output and Results 
Advantage 1: We can see what the priority function looks like.

This model was trained to construct isosceles-free sets on a 9x9 grid.



Funsearch Output and Results 
Advantage 1: We can see what the priority function looks like.

This model was trained to construct isosceles-free sets on a 9x9 grid. We can also visualize the priority function by 
plotting the priorities. There is, for example, a clear L2 preference (as expected).



Funsearch Output and Results 
Advantage 2: We can test the generation mechanism on values it was not trained on. 

The model trained on n=9 generalizes better than the other models. It even generalizes better than models 
trained on multiple different input values during training including a model that just prioritizes L2 distance from 
the center. So we can infer that the model is learning more than just that. 



Funsearch Output and Results 
Advantage 3: It’s relatively easy to change the code to create new experiments. If we want to ‘mod out’ 
the effect of the L2 norm, we could change the distance function to embed the problem on a torus. 
Everything else stays the same!
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Funsearch Output and Results 
Advantage 3: It’s relatively easy to change the code to create new experiments. 

A small change in the evaluation during training can result in a different but interesting problem.

Here, we’re finding small, maximal isosceles-free subsets of the lattice instead of large ones!



Funsearch Output and Results 
Advantage 3: It’s relatively easy to change the code to create new experiments. 
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Advantage 4: It is easy to build in prior knowledge. Just code it into the solve function. 
We saw earlier that some of the best functions were found by enforcing some symmetry. Even if we didn’t see that 
beforehand, we see that the model trained on n=9 learned a symmetric solution. Almost true outside training 
distribution. So we can change the solve function to enforce symmetry. 
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Funsearch Output and Results 
Advantage 4: It is easy to build in prior knowledge. Just code it into the solve function. 
This gives us both better results and better generalization.



Funsearch Output and Results 
Caution: Changing the approach, even in mathematically equivalent ways, can change the performance. 

Instead of starting with an empty set and learning 
how to add points, we started with a dense set 

and learned how to remove points. 
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FunSearch has a successor, AlphaEvolve, DeepMind June 2025[11].
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