

Karan Srivastava | IBM Research Intern | University of Wisconsin Madison

Algorithm Generation and
FunSearch
SLMath Summer School Lecture

Symbolic Regression

The story thus far

Neural Networks Transformers Genetic Approaches

Data-Driven
Methods

Designing approaches
that learn implicit

functions from data
(NNs, Transformers, SR)

Traditional Neural Methods

MINLP

The story thus far

Data-Driven
Methods

Designing approaches
that learn implicit

functions from data
(NNs, Transformers, SR)

Automated
Reasoning

Automated theorem
provers can help us build

tools to auto formalize
and verify knowledge.

The story thus far

Data-Driven
Methods

Designing approaches
that learn implicit

functions from data
(NNs, Transformers, SR)

Automated
Reasoning

Automated theorem
provers can help us build

tools to auto formalize
and verify knowledge.

Data + Reasoning
Iterated

We can take functional
forms learned on data and

test on theory to study
outputs. (AI Descartes)

The story thus far

Data-Driven
Methods

Designing approaches
that learn implicit

functions from data
(NNs, Transformers, SR)

Automated
Reasoning

Automated theorem
provers can help us build

tools to auto formalize
and verify knowledge.

Data + Reasoning
Iterated

We can take functional
forms learned on data and

test on theory to study
outputs. (AI Descartes)

Data +
Reasoning Integrated
Integrating both data

and theory in the search
process can improve

search (AI Hilbert)

Some motivating problems for today

Motivating Example 1

We have a 3x3 integer lattice whose coordinates are in or . What’s the largest subset of
points on the lattice so that no three points sum up (coordinate-wise) to with addition modulo 3?

{0,1,2} × {0,1,2} ℤ2
3

(0,0)

(0,0)

(2,2)(2,1)(2,0)

(0,1) (0,2)

(1,0) (1,1) (1,2)

Motivating Example 1

We have a 3x3 integer lattice whose coordinates are in or . What’s the largest subset of
points on the lattice so that no three points sum up (coordinate-wise) to with addition modulo 3?

{0,1,2} × {0,1,2} ℤ2
3

(0,0)

(0,0)

(2,2)(2,1)(2,0)

(0,1) (0,2)

(1,0) (1,1) (1,2)

Motivating Example 1

We have a 3x3 integer lattice whose coordinates are in or . What’s the largest subset of
points on the lattice so that no three points sum up (coordinate-wise) to with addition modulo 3?

{0,1,2} × {0,1,2} ℤ2
3

(0,0)

What’s the largest subset of with no three points in a line? Largest sets known only till n = 6. Lower and
upper bounds are and .

ℤd
3

2.2202d 2.756d

“Perhaps my favorite open question” - Terrance Tao, 2007 blog post[1].

(0,0)

(2,2)(2,1)(2,0)

(0,1) (0,2)

(1,0) (1,1) (1,2)

Motivating Example 1

We have a 3x3 integer lattice whose coordinates are in or . What’s the largest subset of
points on the lattice so that no three points sum up (coordinate-wise) to with addition modulo 3?

{0,1,2} × {0,1,2} ℤ2
3

(0,0)

What’s the largest subset of with no three points in a line? Largest sets known only till n = 6. Lower and
upper bounds are and .

ℤd
3

2.2202d 2.756d

“Perhaps my favorite open question” - Terrance Tao, 2007 blog post[1].

(0,0)

(2,2)(2,1)(2,0)

(0,1) (0,2)

(1,0) (1,1) (1,2)

Motivating Example 2

What is the largest subset of 3x3 lattice such that no three points form an isosceles triangle?

Motivating Example 2

What is the largest subset of 3x3 lattice such that no three points form an isosceles triangle?

Motivating Example 2

What is the largest subset of 3x3 lattice such that no three points form an isosceles triangle?

“Karan, this would be a cool problem to think about” - Jordan Ellenberg, mathematician and PhD advisor.
- Problem originated from a study of convergence rates on ordinal embeddings[2].

What’s the size of the largest subset of an integer lattice with no 3 points forming an isosceles triangle? Largest sets

known only till n=10. Lower and upper bounds are still far apart: ϵ′￼

N
log N

≤ S ≤ exp(−c(log N)1
9)N2

Motivating Example 2

What is the largest subset of 3x3 lattice such that no three points form an isosceles triangle?

“Karan, this would be a cool problem to think about” - Jordan Ellenberg, mathematician and PhD advisor.
- Problem originated from a study of convergence rates on ordinal embeddings[2].

What’s the size of the largest subset of an integer lattice with no 3 points forming an isosceles triangle? Largest sets

known only till n=10. Lower and upper bounds are still far apart: ϵ′￼

N
log N

≤ S ≤ exp(−c(log N)1
9)N2

Motivating Example 2

What is the largest subset of 3x3 lattice such that no three points form an isosceles triangle?

“Karan, this would be a cool problem to think about” - Jordan Ellenberg, mathematician and PhD advisor.
- Problem originated from a study of convergence rates on ordinal embeddings[2].

What’s the size of the largest subset of an integer lattice with no 3 points forming an isosceles triangle? Largest sets

known only till n=10. Lower and upper bounds are still far apart: ϵ′￼

N
log N

≤ S ≤ exp(−c(log N)1
9)N2

Motivating Example 2

Question: If you had no prior information, how would you use some of the techniques we have seen so far to
generate examples?

(0,0)

(2,2)(2,1)(2,0)

(0,1) (0,2)

(1,0) (1,1) (1,2)

Motivating Example 2

Question: If you had no prior information, how would you use some of the techniques we have seen so far to
generate examples?

Key features:

(0,0)

(2,2)(2,1)(2,0)

(0,1) (0,2)

(1,0) (1,1) (1,2)

Motivating Example 2

Question: If you had no prior information, how would you use some of the techniques we have seen so far to
generate examples?

Key features:

• Hard to solve (exponential in via brute force)n2

(0,0)

(2,2)(2,1)(2,0)

(0,1) (0,2)

(1,0) (1,1) (1,2)

Motivating Example 2

Question: If you had no prior information, how would you use some of the techniques we have seen so far to
generate examples?

Key features:

• Hard to solve (exponential in via brute force)
• Easy to verify

n2

(0,0)

(2,2)(2,1)(2,0)

(0,1) (0,2)

(1,0) (1,1) (1,2)

Motivating Example 2

Question: If you had no prior information, how would you use some of the techniques we have seen so far to
generate examples?

Key features:

• Hard to solve (exponential in via brute force)
• Easy to verify
• No data available

n2

(0,0)

(2,2)(2,1)(2,0)

(0,1) (0,2)

(1,0) (1,1) (1,2)

How might we approach this?

Data-Driven
Methods

Automated
Reasoning

Data +
Reasoning

Iterated

Data +
Reasoning
Integrated

Generating Functions

In all the approaches we have seen so far, we are learning functions.

How might we approach this?

Data-Driven
Methods

Automated
Reasoning

Data +
Reasoning

Iterated

Data +
Reasoning
Integrated

Generating Functions

In all the approaches we have seen so far, we are learning functions.

Design question: What function can we try to learn? This will inform what approach we try.

How might we approach this?

Data-Driven
Methods

Automated
Reasoning

Data +
Reasoning

Iterated

Data +
Reasoning
Integrated

Generating Functions

In all the approaches we have seen so far, we are learning functions.

Design question: What function can we try to learn? This will inform what approach we try. One idea: learn a
probability distribution on points on the grid.

F () = ℙ()

How might we approach this?

Data-Driven
Methods

Automated
Reasoning

Data +
Reasoning

Iterated

Data +
Reasoning
Integrated

Generating Functions

In all the approaches we have seen so far, we are learning functions.

Design question: What function can we try to learn? This will inform what approach we try. One idea: learn a
probability distribution on points on the grid.

Neural Networks Transformers

How might we approach this?

Data-Driven
Methods

Neural Networks

Transformers

Advantage of neural-network approaches:

How might we approach this?

Data-Driven
Methods

Neural Networks

Transformers

Advantage of neural-network approaches:

- Universal function approximators - so they can learn various kinds of functions.

How might we approach this?

Data-Driven
Methods

Neural Networks

Transformers

Advantage of neural-network approaches:

- Universal function approximators - so they can learn various kinds of functions.

- Can discover lots of internal structure in data.

How might we approach this?

Data-Driven
Methods

Neural Networks

Transformers

Advantage of neural-network approaches:

- Universal function approximators - so they can learn various kinds of functions.

- Can discover lots of internal structure in data.

- Architecture scales for the problems in higher dimensions and degrees well.

How might we approach this?

Data-Driven
Methods

Neural Networks

Transformers

Advantage of neural-network approaches:

- Universal function approximators - so they can learn various kinds of functions.

- Can discover lots of internal structure in data.

- Architecture scales for the problems in higher dimensions and degrees well.

Problem

These examples are hard to come up with. So we have very little training data!

How might we approach this?

Data-Driven
Methods

Neural Networks

Transformers

Advantage of neural-network approaches:

- Universal function approximators - so they can learn various kinds of functions.

- Can discover lots of internal structure in data.

- Architecture scales for the problems in higher dimensions and degrees well.

Problem

These examples are hard to come up with. So we have very little training data!

Solution
Self Improvement

Approach 1: Reinforcement Learning

Spot, Boston Dynamics[3]. AlphaZero, DeepMind[4].

Reinforcement Learning

A self improvement approach to
machine learning where we need to
learn tasks for which we have little to

no data.

One step lower

Aim: To train an agent with no prior
knowledge to learn a policy for taking
actions in the environment in order to

maximize a reward and achieve a
goal.

Approach 1: Reinforcement Learning

What do we then need to train a reinforcement learning agent:

Approach 1: Reinforcement Learning

What do we then need to train a reinforcement learning agent:

1. An environment (the state space of the game).

Approach 1: Reinforcement Learning

What do we then need to train a reinforcement learning agent:

1. An environment (the state space of the game).
2. An action space (the set of actions that change the state).

Approach 1: Reinforcement Learning

What do we then need to train a reinforcement learning agent:

1. An environment (the state space of the game).
2. An action space (the set of actions that change the state).
3. An agent that will choose actions to move between states.

Approach 1: Reinforcement Learning

Policy encoded in network weights
(Warning: The policy is not always the same as

the agent. Eg. Spot, QLearning, etc)

What do we then need to train a reinforcement learning agent:

1. An environment (the state space of the game).
2. An action space (the set of actions that change the state).
3. An agent that will choose actions to move between states.
4. A policy function that the agent will use to choose actions.

Approach 1: Reinforcement Learning

:D ;-;

What do we then need to train a reinforcement learning agent:

1. An environment (the state space of the game).
2. An action space (the set of actions that change the state).
3. An agent that will choose actions to move between states.
4. A policy function that the agent will use to choose actions.
5. A value function to assign a score each state.

Approach 1: Reinforcement Learning

What do we then need to train a reinforcement learning agent:

1. An environment (the state space of the game).
2. An action space (the set of actions that change the state).
3. An agent that will choose actions to move between states.
4. A policy function that the agent will use to choose actions.
5. A value function to assign a score each state.

So how does this work for finding large subsets of lattices?

Approach 1: Reinforcement Learning

What do we then need to train a reinforcement learning agent:

1. An environment (the state space of the game).
2. An action space (the set of actions that change the state).
3. An agent that will choose actions to move between states.
4. A policy function that the agent will use to choose actions.
5. A value function to assign a score each state.

So how does this work for finding large subsets of lattices?

States
The set of all

possible subsets
of the lattice.

Approach 1: Reinforcement Learning

What do we then need to train a reinforcement learning agent:

1. An environment (the state space of the game).
2. An action space (the set of actions that change the state).
3. An agent that will choose actions to move between states.
4. A policy function that the agent will use to choose actions.
5. A value function to assign a score each state.

So how does this work for finding large subsets of lattices?

States
The set of all

possible subsets
of the lattice.

Actions
Adding a point to
an existing given

state.

Approach 1: Reinforcement Learning

What do we then need to train a reinforcement learning agent:

1. An environment (the state space of the game).
2. An action space (the set of actions that change the state).
3. An agent that will choose actions to move between states.
4. A policy function that the agent will use to choose actions.
5. A value function to assign a score each state.

So how does this work for finding large subsets of lattices?

Agent
Neural Network
that will decide

point placement.

States
The set of all

possible subsets
of the lattice.

Actions
Adding a point to
an existing given

state.

Approach 1: Reinforcement Learning

What do we then need to train a reinforcement learning agent:

1. An environment (the state space of the game).
2. An action space (the set of actions that change the state).
3. An agent that will choose actions to move between states.
4. A policy function that the agent will use to choose actions.
5. A value function to assign a score each state.

So how does this work for finding large subsets of lattices?

Agent
Neural Network
that will decide

point placement.

States
The set of all

possible subsets
of the lattice.

Actions
Adding a point to
an existing given

state.

Approach 1: Reinforcement Learning

What do we then need to train a reinforcement learning agent:

1. An environment (the state space of the game).
2. An action space (the set of actions that change the state).
3. An agent that will choose actions to move between states.
4. A policy function that the agent will use to choose actions.
5. A value function to assign a score each state

So how does this work for finding large subsets of lattices?

Agent
Neural Network
that will decide

point placement.

States
The set of all

possible subsets
of the lattice.

Actions
Adding a point to
an existing given

state.

65

6

Approach 1: Reinforcement Learning
The game
Define a neural network that takes in the current state of the grid (encoded as a vector) and an index to be considered on
the grid and output a scalar in .p [0,1]

Approach 1: Reinforcement Learning
The game
Define a neural network that takes in the current state of the grid (encoded as a vector) and an index to be considered on
the grid and output a scalar in . Add the point with probability .p [0,1] p

Approach 1: Reinforcement Learning
The game
Define a neural network that takes in the current state of the grid (encoded as a vector) and an index to be considered on
the grid and output a scalar in . Add the point with probability . Repeat with the next indexp [0,1] p

Approach 1: Reinforcement Learning
The game
Define a neural network that takes in the current state of the grid (encoded as a vector) and an index to be considered on
the grid and output a scalar in . Add the point with probability . Repeat with the next index and so on until we
have checked every index.

p [0,1] p

Approach 1: Reinforcement Learning
The game
Define a neural network that takes in the current state of the grid (encoded as a vector) and an index to be considered on
the grid and output a scalar in . Add the point with probability . Repeat with the next index and so on until we
have checked every index.

The evaluation
Sample lots of games (~2000)

p [0,1] p

Sampled Games

Approach 1: Reinforcement Learning
The game
Define a neural network that takes in the current state of the grid (encoded as a vector) and an index to be considered on
the grid and output a scalar in . Add the point with probability . Repeat with the next index and so on until we
have checked every index.

The evaluation
Sample lots of games (~2000) and assign a score to each one. Filter out the top .

p [0,1] p

k %

Sampled Games Sample Scoring Function
Score = # of points - (# of isosceles s)λ Δ

Score = 5 Score = 3.5

Approach 1: Reinforcement Learning
The game
Define a neural network that takes in the current state of the grid (encoded as a vector) and an index to be considered on
the grid and output a scalar in . Add the point with probability . Repeat with the next index and so on until we
have checked every index.

The evaluation
Sample lots of games (~2000) and assign a score to each one. Filter out the top .

p [0,1] p

k %

Sample Scoring Function
Score = # of points - (# of isosceles s)λ Δ

Best Games

Score = 5 Score = 3.5

Sampled Games

Score = 5 Score = 3.5

Score = 3 Score = 1 Score = 3 Score = 1

Note:
The scoring here is smooth. Binary /
categorical scoring would be worse.

The game
Define a neural network that takes in the current state of the grid (encoded as a vector) and an index to be considered on
the grid and output a scalar in . Add the point with probability . Repeat with the next index and so on until we
have checked every index.

The evaluation
Sample lots of games (~2000) and assign a score to each one. Filter out the top .

The Reinforcement Learning
Treat the best games as ‘ground truth’ and train the network on them.

p [0,1] p

k %

Approach 1: Reinforcement Learning

Score = 5 Score = 3.5

Score = 3 Score = 1

Best
Games

The game
Define a neural network that takes in the current state of the grid (encoded as a vector) and an index to be considered on
the grid and output a scalar in . Add the point with probability . Repeat with the next index and so on until we
have checked every index.

The evaluation
Sample lots of games (~2000) and assign a score to each one. Filter out the top .

The Reinforcement Learning
Treat the best games as ‘ground truth’ and train the network on them.

p [0,1] p

k %

Approach 1: Reinforcement Learning

Score = 5 Score = 3.5

Score = 3 Score = 1

Best
Games

Sample
Games

Filter
Games

Results

Approach 1: Reinforcement Learning

N 3 4 5 6 10 15 64

Size 4 6 7 9 12 17 80

Seems
better than known

lower bound

Size >
cN
log N

Algorithm Background

Aim: Use this algorithm to generate
counterexamples to conjectures in combinatorics

Adapted from work by Adam Wagner[5]:

Algorithm Background

Adapted from work by Adam Wagner[5]:
Example Conjecture 1

For any graph with vertices, we have,

G n

λ1(G) + μ(G) ≥ n − 1 + 1

Aim: Use this algorithm to generate
counterexamples to conjectures in combinatorics

Algorithm Background
Example Conjecture 1

For any graph with vertices, we have,

G n

λ1(G) + μ(G) ≥ n − 1 + 1

Aim: Use this algorithm to generate
counterexamples to conjectures in combinatorics

Adapted from work by Adam Wagner[5]:

Algorithm Background
Example Conjecture 2

For any graph , is asymptotically minimized by
random graphs.

G K4(G) + K4(Ḡ)

Aim: Use this algorithm to generate
counterexamples to conjectures in combinatorics

Adapted from work by Adam Wagner[5]:

Algorithm Background
Example Conjecture 2

For any graph , is asymptotically minimized by
random graphs.

G K4(G) + K4(Ḡ)

Aim: Use this algorithm to generate
counterexamples to conjectures in combinatorics

Adapted from work by Adam Wagner[5]:

Algorithm Background
Example Conjecture 3

Let be a graph with diameter D, proximity , and distance

spectrum , then

G π
∂1 ≥ . . . ≥ ∂n

π + ∂⌊ 2D
3 ⌋ > 0

Aim: Use this algorithm to generate
counterexamples to conjectures in combinatorics

Adapted from work by Adam Wagner[5]:

Algorithm Background
Example Conjecture 3

Let be a graph with diameter D, proximity , and distance

spectrum , then

G π
∂1 ≥ . . . ≥ ∂n

π + ∂⌊ 2D
3 ⌋ > 0

Aim: Use this algorithm to generate
counterexamples to conjectures in combinatorics

Not a counterexample…..

Adapted from work by Adam Wagner[5]:

Algorithm Background
Example Conjecture 3

Let be a graph with diameter D, proximity , and distance

spectrum , then

G π
∂1 ≥ . . . ≥ ∂n

π + ∂⌊ 2D
3 ⌋ > 0

Aim: Use this algorithm to generate
counterexamples to conjectures in combinatorics

Not a counterexample….. but it leads to one

Adapted from work by Adam Wagner[5]:

Algorithm Background

Immediate Counterexample

Almost a Counterexample
But was able to extend to counterexample

Not a Counterexample and / or not insightful

Aim: Use this algorithm to generate
counterexamples to conjectures in combinatorics

Adapted from work by Adam Wagner[5]:

Results

Approach 1: Reinforcement Learning

N 3 4 5 6 10 15 64

Size 4 6 7 9 12 17 80

Seems
better than known

lower bound

Size >
cN
log N

Alternative: Use a transformer + local search instead

Approach 1: Reinforcement Learning

Score = 3

Best
Games

Sample
Games

Filter
Games

Score = 3

Best
Games

Sample
Games

Local
Search

Alternative: Use a transformer + local search instead[6]

Approach 1: Reinforcement Learning

Score = 3

Best
Games

Sample
Games

Local
Search

Alternative: Use a transformer + local search instead[6]

Results[6]

Approach 1: Reinforcement Learning

Alternative: Use a transformer + local search instead[6]

Results[6]

Approach 1: Reinforcement Learning

N=64

Size = 108

Drawback: These results are great, but they
are hard to draw insights from!

Traditional Neural Approaches have drawbacks.

Data-Driven
Methods

Neural Networks

Transformers

Drawback

1. Results are usually less interpretable. The
mechanism behind the generation is difficult to
understand.

2. For different input sizes, we might have to
train a new model. So difficult to test
generalization.

Change of Approach: Functions to Algorithms

Data-Driven
Methods

Automated
Reasoning

Data + Reasoning
Iterated

Data + Reasoning
Integrated

Generating Functions

The methods we have looked at are approaches for generating functions. Instead of generating
functions, we will focus on generating algorithms.

Data-Driven
Methods

Automated
Reasoning

Data + Reasoning
Iterated

Data + Reasoning
Integrated

Generating Functions

The methods we have looked at are approaches for generating functions. Instead of generating
functions, we will focus on generating algorithms.

FunSearch Generating
Algorithms

Change of Approach: Functions to Algorithms

Aim: Train a large language model to generate code that we can use to
construct examples.

For the purposes of this talk, we will follow the work on FunSearch, by DeepMind[8]

Algorithms and LLMs

Given the Capset problem, we can represent the solution to the problem in two ways.

Algorithms and LLMs

(0,0)

(2,2)(2,1)(2,0)

(0,1) (0,2)

(1,0) (1,1) (1,2)

Given the Capset problem, we can represent the solution to the problem in two ways.

Via a set of points

Algorithms and LLMs

Need to be careful: LLMs by themselves cannot solve complex reasoning tasks. Solutions may not
be plausible / might hallucinate

GPT4o attempt at solving
the isosceles free

problem for n=64 with
chain of thought

reasoning.

Algorithms and LLMs

(0,0)

(2,2)(2,1)(2,0)

(0,1) (0,2)

(1,0) (1,1) (1,2)

Given the Capset problem, we can represent the solution to the problem in two ways.

Via a set of points Via an algorithm

Advantage of expressing as an algorithm:

1. We can verify the correctness of an algorithm quickly (evaluation is easy)

Algorithms and LLMs

(0,0)

(2,2)(2,1)(2,0)

(0,1) (0,2)

(1,0) (1,1) (1,2)

Given the Capset problem, we can represent the solution to the problem in two ways.

Via a set of points Via an algorithm

Advantage of expressing as an algorithm:

1. We can verify the correctness of an algorithm quickly (evaluation is easy)

2. We can test the generating mechanism on cases out of the training distribution (can study
generalization)

Algorithms and LLMs

Key tool for generating code: Large Language Models.

Large Language Models have shown widespread success in code generation. Example below:
Evaluation of various models on the HumanEval and MBPP benchmarks[6].

Algorithms and LLMs

Key tool for generating code: Large Language Models.

Large Language Models have shown widespread success in code generation. Example below:
Evaluation of various models on the HumanEval and MBPP benchmarks[6].

So…. can we just get GPT to
write us a script to solve it?

Algorithms and LLMs

Need to be careful: LLMs by themselves cannot just solve complex reasoning tasks.

GPT4o one-shot attempt at writing code to generate an algorithm that generates isosceles-free sets. While a human might not
have written that example by hand, the code shows that it’s a greedy algorithm! One could have certainly done that!

Funsearch Overview

Key features of our problems:

Funsearch Overview

Key features of our problems:
• Easy to verify - We can build a filter for incorrect / bad programs

Funsearch Overview

Key features of our problems:
• Easy to verify - We can build a filter for incorrect / bad programs
• No data available - We will rely on some self improvement

Funsearch Overview

Key features of our problems:
• Easy to verify - We can build a filter for incorrect / bad programs
• No data available - We will rely on some self improvement
• Smooth Scoring - We can make gradual improvements to the code

Funsearch Overview

Key features of our problems:
• Easy to verify - We can build a filter for incorrect / bad programs
• No data available - We will rely on some self improvement
• Smooth Scoring - We can make gradual improvements to the code

Funsearch

Funsearch Overview

Key features of our problems:
• Easy to verify - We can build a filter for incorrect / bad programs
• No data available - We will rely on some self improvement
• Smooth Scoring - We can make gradual improvements to the code

Funsearch Code Samples

Funsearch Overview

Key features of our problems:
• Easy to verify - We can build a filter for incorrect / bad programs
• No data available - We will rely on some self improvement
• Smooth Scoring - We can make gradual improvements to the code

Funsearch Code Samples Evaluation

Funsearch Overview

Key features of our problems:
• Easy to verify - We can build a filter for incorrect / bad programs
• No data available - We will rely on some self improvement
• Smooth Scoring - We can make gradual improvements to the code

Funsearch Code Samples Evaluation

Funsearch Overview

Key features of our problems:
• Easy to verify - We can build a filter for incorrect / bad programs
• No data available - We will rely on some self improvement
• Smooth Scoring - We can make gradual improvements to the code

Funsearch Code Improvement

The role of the Large Language Model

Take a code that works, make a small
improvement to it.

Funsearch Code Improvement

Example Slide from Matej Balog CMSA talk[9]

We’ll start with a code that builds capsets (likely sub-optimally)

The role of the
Large Language Model

Take a code that works, make a
small improvement to it.

Funsearch Code Improvement

Generated by LLM

Example Slide from Matej Balog CMSA talk[9]

We’ll prompt the LLM to make an improvement in the code.

The role of the
Large Language Model

Take a code that works, make a
small improvement to it.

Gives size 4 capset in dim 2

Example Slide from Matej Balog CMSA talk[9]

Gives size 2 capset in dim 2

Funsearch Code Improvement

We’ll prompt the LLM to make an improvement in the code.

The role of the
Large Language Model

Take a code that works, make a
small improvement to it.

Example Slide from Matej Balog CMSA talk[9]

Funsearch Code Improvement

We’ll substitute the new code in and repeat!

The role of the
Large Language Model

Take a code that works, make a
small improvement to it.

Example Slide from Matej Balog CMSA talk[9]

Funsearch Code Improvement

But we need to be careful: Iteratively improving the same candidate can lead to local minima.

We’ll substitute the new code in and repeat!

The role of the
Large Language Model

Take a code that works, make a
small improvement to it.

Funsearch Code Improvement

But we need to be careful: Iteratively improving the same candidate can lead to local minima.

fun v_0

Funsearch Code Improvement

But we need to be careful: Iteratively improving the same candidate can lead to local minima.

fun v_0

Funsearch Code Improvement

But we need to be careful: Iteratively improving the same candidate can lead to local minima.

We want to have multiple different perturbations of the code that we can study over time.

fun v_0

Funsearch Code Improvement

But we need to be careful: Iteratively improving the same candidate can lead to local minima.

We want to have multiple different perturbations of the code that we can study over time.

fun v_0

Solution
Genetic

Evolution

Funsearch Genetic Algorithm

Earlier in the summer school, we saw an application of a genetic algorithm:

Funsearch Genetic Algorithm

In order to implement a genetic evolution algorithm, we need:
1. An initialization of the population
2. A mutation mechanism for each population
3. A score to test for which species survive

Funsearch Genetic Algorithm

In order to implement a genetic evolution algorithm, we need:
1. An initialization of the population
2. A mutation mechanism for each population
3. A score to test for which species survive

Initial Program

Database of programs partitioned into islands

def fun_1():

def fun_2():

def fun_3():

def fun_4():

def fun_5():

def fun_6():

def fun_7():

def fun_8():

Funsearch Genetic Algorithm

In order to implement a genetic evolution algorithm, we need:
1. An initialization of the population
2. A mutation mechanism for each population
3. A score to test for which species survive

Database of programs partitioned into islands

def fun_1():

def fun_2():

def fun_3():

def fun_4():

def fun_5():

def fun_6():

def fun_7():

def fun_8():

def fun_1():

def fun_2():

def fun_1():

def fun_2():

def fun_1():
def fun_2():

def fun_2.5():

def fun_2.5():LLM

Funsearch Genetic Algorithm

In order to implement a genetic evolution algorithm, we need:
1. An initialization of the population
2. A mutation mechanism for each population
3. A score to test for which species survive

Database of programs partitioned into islands

def fun_1():

def fun_2():

def fun_3():

def fun_4():

def fun_5():

def fun_6():

def fun_7():

def fun_8():

def fun_1():

def fun_2():

def fun_1():

def fun_2():

def fun_1():
def fun_2():

def fun_2.5():

def fun_2.5():LLM

def fun_1():
def fun_2():

def fun_3():
def fun_4():

def fun_5():
def fun_6():

def fun_7():

def fun_8():

def fun_2.5(): def fun_4.5():

def fun_6.5(): def fun_8.5():

Funsearch Genetic Algorithm

In order to implement a genetic evolution algorithm, we need:
1. An initialization of the population
2. A mutation mechanism for each population
3. A score to test for which species survive

def fun_1():
def fun_2():

def fun_3():
def fun_4():

def fun_5():
def fun_6():

def fun_7():

def fun_8():

def fun_2.5(): def fun_4.5():

def fun_6.5(): def fun_8.5():

Evaluator

Score fun_1():
Score fun_2():

Score fun_3():
Score fun_4():

Score fun_5():
Score fun_6():

Score fun_7():

Score fun_8():

Score fun_2.5(): Score fun_4.5():

Score fun_6.5(): Score fun_8.5():

Funsearch Genetic Algorithm

In order to implement a genetic evolution algorithm, we need:
1. An initialization of the population
2. A mutation mechanism for each population
3. A score to test for which species survive
Repeat until satisfied!

def fun_1():
def fun_2():

def fun_3():
def fun_4():

def fun_5():
def fun_6():

def fun_7():

def fun_8():

def fun_2.5(): def fun_4.5():

def fun_6.5(): def fun_8.5():

Evaluator

Score fun_1():
Score fun_2():

Score fun_3():
Score fun_4():

Score fun_5():
Score fun_6():

Score fun_7():

Score fun_8():

Score fun_2.5(): Score fun_4.5():

Score fun_6.5(): Score fun_8.5():

Funsearch Genetic Algorithm

In order to implement a genetic evolution algorithm, we need:
1. An initialization of the population
2. A mutation mechanism for each population
3. A score to test for which species survive
Repeat until satisfied!

def fun_1():
def fun_2():

def fun_3():
def fun_4():

def fun_5():
def fun_6():

def fun_7():

def fun_8():

def fun_2.5(): def fun_4.5():

def fun_6.5(): def fun_8.5():

Evaluator

Score fun_1():
Score fun_2():

Score fun_3():
Score fun_4():

Score fun_5():
Score fun_6():

Score fun_7():

Score fun_8():

Score fun_2.5(): Score fun_4.5():

Score fun_6.5(): Score fun_8.5():

Funsearch Genetic Algorithm

Leveraging three things here:

1. Our ability to run inference in parallel
2. Our ability to evaluate fast in parallel
3. LLM ‘creativity’.

def fun_1():
def fun_2():

def fun_3():
def fun_4():

def fun_5():
def fun_6():

def fun_7():

def fun_8():

def fun_2.5(): def fun_4.5():

def fun_6.5(): def fun_8.5():

Evaluator

Score fun_1():
Score fun_2():

Score fun_3():
Score fun_4():

Score fun_5():
Score fun_6():

Score fun_7():

Score fun_8():

Score fun_2.5(): Score fun_4.5():

Score fun_6.5(): Score fun_8.5():

Let’s see how this works from
input to output!

Program Specification

Funsearch Input
We input three functions.

Solve Evolve Evaluate

This function
is the ‘prior

knowledge’ function
that will build outputs

(say, capsets) using
the function

funsearch designs.

This is the
function funsearch

will learn through the
genetic algorithm.

You define what the
input features you

want the function to
consider and what to

output

This function
is the evaluator that

determines what
score to assign each
program. It will first

solve the problem
using the solve
function then

evaluate the output.

Funsearch Input

Solve

This function
is the ‘prior

knowledge’ function
that will build outputs

(say, capsets) using
the function

funsearch designs.

Evolve

This is the
function funsearch

will learn through the
genetic algorithm.

You define what the
input features you

want the function to
consider and what to

output

Funsearch Input

Evaluate

This function
is the evaluator that

determines what
score to assign each
program. It will first

solve the problem
using the solve
function then

evaluate the output.

Funsearch Input

Funsearch Evolution Step

def priority_1():
def priority_2():

• We will initialize some number of islands/independent databases with copies of our initial function to
evolve. For each island, we will develop a database of program.

def priority_3():
def priority_4():

def priority_5():
def priority_6():

def priority_7():
def priority_8():

Funsearch Evolution Step

def priority_1():
def priority_2():

• We will initialize some number of islands/independent databases with copies of our initial function to
evolve. For each island, we will develop a database of program.

• We repeat the evolutionary algorithm for each island for as many iterations as desired.

Funsearch Evolution Step
• We will initialize some number of islands/independent databases with copies of our initial function to

evolve. For each island, we will develop a database of program.

• We repeat the evolutionary algorithm for each island for as many iterations as desired.

• Some islands might converge to suboptimal solutions. We therefore periodically reset the islands and seed
them with good performing programs from the surviving islands.

def priority_1():

def priority_2():

def priority_3():

def priority_4():

def priority_5():
def priority_6():

def priority_7():
def priority_8():

After many iterations

def priority_1():

def priority_2():

def priority_2():

def priority_7():

def priority_1():
def priority_7():

def priority_7():
def priority_8():

Funsearch Output and Results

• This method was used to discover the largest known Capset at size n=8.

• This was used to extend the best known lower bound at the time from to the now best .2.2173n 2.2202n

Funsearch Output and Results

Priority function that is
used to generate the
largest known capset

for n=8.

Funsearch Output and Results

Shorter code was
found later using the

same method

Funsearch Output and Results
• What about the isosceles free subset problem?

Funsearch Output and Results
• Results on this will follow our recent arXiv submission[10].

Built a working, open source
implementation of funsearch

designed for working
mathematicians

Tested the capabilities of funsearch
on various models

Studied results for funsearch on
the isosceles free problem -

focussing on generalization outside
the training set.

Funsearch Output and Results

We can design a very
similar program specification!

The solve function is almost
the exact same - a greedy

algorithm moving in order of
high to low priority weights

assigned to each node.

The evaluation and
initialization priority are the

same.

• Basic models here refer to our funsearch runs with the specification files.

• The learned models don’t outperform SOTA. However, we should note that the original funsearch paper
reported to use that for reproducibility of some of their results, 15 instances of StarCoder-15B running on
A100 40 GB GPU each and 5 CPU servers (each running 32 evaluators in parallel) for two days, with an
estimate that when running on Google Cloud, the price of an experiment is around $800 – $1400[8]. We ran
trained these models for 30 minutes with ~$2 worth of tokens on mistral-tiny with an 8-core M2 MacBook.

So what can we say about the functions?

Funsearch Output and Results

*We had a run improve to 96 when run with GPT4o with 10x the number of tokens.

Funsearch Output and Results
Advantage 1: We can see what the priority function looks like.

This model was trained to construct isosceles-free sets on a 9x9 grid.

Funsearch Output and Results
Advantage 1: We can see what the priority function looks like.

This model was trained to construct isosceles-free sets on a 9x9 grid. We can also visualize the priority function by
plotting the priorities. There is, for example, a clear L2 preference (as expected).

Funsearch Output and Results
Advantage 2: We can test the generation mechanism on values it was not trained on.

The model trained on n=9 generalizes better than the other models. It even generalizes better than models
trained on multiple different input values during training including a model that just prioritizes L2 distance from
the center. So we can infer that the model is learning more than just that.

Funsearch Output and Results
Advantage 3: It’s relatively easy to change the code to create new experiments. If we want to ‘mod out’
the effect of the L2 norm, we could change the distance function to embed the problem on a torus.
Everything else stays the same!

Funsearch Output and Results
Advantage 3: It’s relatively easy to change the code to create new experiments. If we want to ‘mod out’
the effect of the L2 norm, we could change the distance function to embed the problem on a torus.
Everything else stays the same!

Funsearch Output and Results
Advantage 3: It’s relatively easy to change the code to create new experiments. If we want to ‘mod out’
the effect of the L2 norm, we could change the distance function to embed the problem on a torus.
Everything else stays the same!

Funsearch Output and Results
Advantage 3: It’s relatively easy to change the code to create new experiments.

A small change in the evaluation during training can result in a different but interesting problem.

Here, we’re finding small, maximal isosceles-free subsets of the lattice instead of large ones!

Funsearch Output and Results
Advantage 3: It’s relatively easy to change the code to create new experiments.

Funsearch Output and Results
Advantage 4: It is easy to build in prior knowledge. Just code it into the solve function.
We saw earlier that some of the best functions were found by enforcing some symmetry.

Funsearch Output and Results
Advantage 4: It is easy to build in prior knowledge. Just code it into the solve function.
We saw earlier that some of the best functions were found by enforcing some symmetry. Even if we didn’t see that
beforehand, we see that the model trained on n=9 learned a symmetric solution. Almost true outside training
distribution.

Funsearch Output and Results
Advantage 4: It is easy to build in prior knowledge. Just code it into the solve function.
We saw earlier that some of the best functions were found by enforcing some symmetry. Even if we didn’t see that
beforehand, we see that the model trained on n=9 learned a symmetric solution. Almost true outside training
distribution. So we can change the solve function to enforce symmetry.

Funsearch Output and Results
Advantage 4: It is easy to build in prior knowledge. Just code it into the solve function.

Funsearch Output and Results
Advantage 4: It is easy to build in prior knowledge. Just code it into the solve function.
This gives us both better results and better generalization.

Funsearch Output and Results
Caution: Changing the approach, even in mathematically equivalent ways, can change the performance.

Instead of starting with an empty set and learning
how to add points, we started with a dense set

and learned how to remove points.

Funsearch Output and Results
Caution: Changing the approach, even in mathematically equivalent ways, can change the performance.

Instead of learning the weights on a greedy
algorithm, we learn a priority function that takes in

a subset and picks the next point to add.

Funsearch Output and Results
Caution: Changing the approach, even in mathematically equivalent ways, can change the performance.

Instead of learning the weights on a greedy
algorithm, we learn a priority function that takes in

a subset and picks the next point to add.

Updates in this space
FunSearch has a successor, AlphaEvolve, DeepMind June 2025[11].

Updates in this space
FunSearch has a successor, AlphaEvolve, DeepMind June 2025[11].

Relations to the workshop thus far

Data-Driven
Methods

Designing approaches
that learn implicit

functions from data
(NNs, Transformers, SR)

So far in the course

What we saw today + role in FunSearch and Algorithm Generation

Relations to the workshop thus far

Data-Driven
Methods

Designing approaches
that learn implicit

functions from data
(NNs, Transformers, SR)

When we don’t have
data, these methods can

still work via self
improvement by generating
data and gradually training

on best examples

So far in the course

What we saw today + role in FunSearch and Algorithm Generation

Relations to the workshop thus far

Data-Driven
Methods

Designing approaches
that learn implicit

functions from data
(NNs, Transformers, SR)

Automated
Reasoning

Automated theorem
provers can help us build

tools to auto formalize
and verify knowledge.

When we don’t have
data, these methods can

still work via self
improvement by generating
data and gradually training

on best examples

So far in the course

What we saw today + role in FunSearch and Algorithm Generation

Relations to the workshop thus far

Data-Driven
Methods

Designing approaches
that learn implicit

functions from data
(NNs, Transformers, SR)

Automated
Reasoning

Automated theorem
provers can help us build

tools to auto formalize
and verify knowledge.

When we don’t have
data, these methods can

still work via self
improvement by generating
data and gradually training

on best examples

So far in the course

What we saw today + role in FunSearch and Algorithm Generation

For classes of problems
where verification is easy

but solving is hard, we can
leverage fast inference at a
large scale to find solutions

Relations to the workshop thus far

Data-Driven
Methods

Designing approaches
that learn implicit

functions from data
(NNs, Transformers, SR)

Automated
Reasoning

Automated theorem
provers can help us build

tools to auto formalize
and verify knowledge.

Data + Reasoning
Iterated

We can take functional
forms learned on data and

test on theory to study
outputs. (AI Descartes)

When we don’t have
data, these methods can

still work via self
improvement by generating
data and gradually training

on best examples

So far in the course

What we saw today + role in FunSearch and Algorithm Generation

For classes of problems
where verification is easy

but solving is hard, we can
leverage fast inference at a
large scale to find solutions

Relations to the workshop thus far

Data-Driven
Methods

Designing approaches
that learn implicit

functions from data
(NNs, Transformers, SR)

Automated
Reasoning

Automated theorem
provers can help us build

tools to auto formalize
and verify knowledge.

Data + Reasoning
Iterated

We can take functional
forms learned on data and

test on theory to study
outputs. (AI Descartes)

When we don’t have
data, these methods can

still work via self
improvement by generating
data and gradually training

on best examples

So far in the course

What we saw today + role in FunSearch and Algorithm Generation

For classes of problems
where verification is easy

but solving is hard, we can
leverage fast inference at a
large scale to find solutions

An advantage of
generating algorithms over
traditional representation is
that we test generalization

through runs.

Relations to the workshop thus far

Data-Driven
Methods

Designing approaches
that learn implicit

functions from data
(NNs, Transformers, SR)

Automated
Reasoning

Automated theorem
provers can help us build

tools to auto formalize
and verify knowledge.

Data + Reasoning
Iterated

We can take functional
forms learned on data and

test on theory to study
outputs. (AI Descartes)

Data +
Reasoning Integrated
Integrating both data

and theory in the search
process can improve

search (AI Hilbert)

When we don’t have
data, these methods can

still work via self
improvement by generating
data and gradually training

on best examples

So far in the course

What we saw today + role in FunSearch and Algorithm Generation

For classes of problems
where verification is easy

but solving is hard, we can
leverage fast inference at a
large scale to find solutions

An advantage of
generating algorithms over
traditional representation is
that we test generalization

through runs.

Relations to the workshop thus far

Data-Driven
Methods

Designing approaches
that learn implicit

functions from data
(NNs, Transformers, SR)

Automated
Reasoning

Automated theorem
provers can help us build

tools to auto formalize
and verify knowledge.

Data + Reasoning
Iterated

We can take functional
forms learned on data and

test on theory to study
outputs. (AI Descartes)

Data +
Reasoning Integrated
Integrating both data

and theory in the search
process can improve

search (AI Hilbert)

When we don’t have
data, these methods can

still work via self
improvement by generating
data and gradually training

on best examples

So far in the course

What we saw today + role in FunSearch and Algorithm Generation

For classes of problems
where verification is easy

but solving is hard, we can
leverage fast inference at a
large scale to find solutions

An advantage of
generating algorithms over
traditional representation is
that we test generalization

through runs.

Prior information is used
to build a skeleton of a

program that we will use in
the neural search process.
Knowledge of the problem

is essential to search.

Relations to the workshop thus far

Data-Driven
Methods

Designing approaches
that learn implicit

functions from data
(NNs, Transformers, SR)

Automated
Reasoning

Automated theorem
provers can help us build

tools to auto formalize
and verify knowledge.

Data + Reasoning
Iterated

We can take functional
forms learned on data and

test on theory to study
outputs. (AI Descartes)

Data +
Reasoning Integrated
Integrating both data

and theory in the search
process can improve

search (AI Hilbert)

When we don’t have
data, these methods can

still work via self
improvement by generating
data and gradually training

on best examples

So far in the course

What we saw today + role in FunSearch and Algorithm Generation

For classes of problems
where verification is easy

but solving is hard, we can
leverage fast inference at a
large scale to find solutions

An advantage of
generating algorithms over
traditional representation is
that we test generalization

through runs.

Prior information is used
to build a skeleton of a

program that we will use in
the neural search process.
Knowledge of the problem

is essential to search.

References
[1] Terry Tao Blog Post: Link here (Open question: best bounds for cap sets, Feb 2007)

[2] Ellenberg, Jordan S., and Lalit Jain. "Convergence rates for ordinal embedding." arXiv preprint
arXiv:1904.12994 (2019).

[3] Spot, Boston Dynamics Robot: https://bostondynamics.com/blog/starting-on-the-right-foot-with-reinforcement-
learning/

[4] Silver, David, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot et
al. "Mastering chess and shogi by self-play with a general reinforcement learning algorithm." arXiv preprint
arXiv:1712.01815 (2017).

[5] Wagner, Adam Zsolt. "Constructions in combinatorics via neural networks." arXiv preprint arXiv:2104.14516 (2021).

[6] Charton, François, Jordan S. Ellenberg, Adam Zsolt Wagner, and Geordie Williamson. "Patternboost:
Constructions in mathematics with a little help from ai." arXiv preprint arXiv:2411.00566 (2024).

[7] Roziere, Baptiste, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi et al. "Code
llama: Open foundation models for code." arXiv preprint arXiv:2308.12950 (2023).

[8] Romera-Paredes, B., Barekatain, M., Novikov, A. et al. Mathematical discoveries from program search with large
language models. Nature 625, 468–475 (2024). https://doi.org/10.1038/s41586-023-06924-6

[9] Matej Balog CMSA Talk - https://www.youtube.com/watch?v=VJ_meFdGwE8&t=753s

[10] Ellenberg, Jordan S., Cristofero S. Fraser-Taliente, Thomas R. Harvey, Karan Srivastava, and Andrew V.
Sutherland. "Generative modeling for mathematical discovery." arXiv preprint arXiv:2503.11061 (2025).

[11] Novikov, Alexander, Ngân Vũ, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt Wagner, Sergey
Shirobokov et al. "AlphaEvolve: A coding agent for scientific and algorithmic discovery." arXiv preprint
arXiv:2506.13131 (2025).

https://terrytao.wordpress.com/2007/02/23/open-question-best-bounds-for-cap-sets/
https://bostondynamics.com/blog/starting-on-the-right-foot-with-reinforcement-learning/
https://bostondynamics.com/blog/starting-on-the-right-foot-with-reinforcement-learning/
https://doi.org/10.1038/s41586-023-06924-6

Karan Srivastava
ksrivastava4@wisc.edu

mailto:ksrivastava4@wisc.edu

