TIME
9:30-10:45 AM

10:45-11:00 AM

11:00AM-12:15PM

12:15-1:30 PM
1:30 - 2:45 PM

2:45 - 3:00 PM

3:00-4:30PM

6 Mon -7/14

Integrated
Discovery I

Break

Integrated
Discovery II

Lunch

Integrated
Discovery III

Break

Tutorial

7 Tue-7/15

Visiting Lecturer
(Oki)

Break

Hands-on
Interactive Lab
Experimentation

(magnets)

Lunch

Yorktown Lab
Tour

Break

Working Groups

8 Wed-7/16

Beyond
Hypotheses
Generation I

Break

Beyond
Hypotheses
Generation II

Yorktown BBQ

Beyond

Hypotheses
Generation

Tutorial

Break

Working Groups

9 Thu-7/17

Beyond
Hypotheses
Generation III

Break

Beyond
Hypotheses
Generation IV

Lunch

Working groups

Break

MOC Reception

10 Fri—7/18

Beyond

Hypotheses
Generation

Applications

Break

Student
Presentations

Lunch

Student
Presentations

Break

Summary
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The story thus far

Data-Driven
Methods
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The story thus far

1TH

—OR

M PROVER

Automated

Reasoning
Automated theorem

provers can help us build
tools to auto formalize
and verify knowledge.

vprover/vampire

The Vampire Theorem Prover

KeYmaera X: An aXiomatic Tactical Theorem Prover for
Hybrid Systems

KeYmaera X

| Download |

Source

Logical Book
Foundations of
(yber-Physical Videos

NHEUS L
Tutorial



The story thus far

oooooooooooooooooooooooooooo

Do we want more

data or background
axioms to supporta :

derivable hypothesis

considering the :
alternatives? :
Experimental design :
* Logic abduction :

Report the best

candidate hypotheses

Comparison with
the known theory
Computation of the
reasoning errors

}Oc\a‘c\
~

Al Descartes
Discovery
Cycle

Data collection and

specification of
background knowledge

and thresholds

Generation of a set of
candidate hypotheses
(e.g., with symbolic
regression)

Computation of the
numerical errors and
uncertainty
quantification

Data + Reasoning
lterated

We can take functional

forms learned on data and

test on theory to study
outputs. (Al Descartes)

Data

Numerical

Background Knowledge

Human curated and/or Al generated

Hypothesis Class

Invariants, symmetry, grammar,

operators set, dimensionality, constraints

| |

Symbolic Regression

Hypothesis engine
— Propose functional form(s) —
Nonlinear regression
Fit constants, assess error

Experimental Design

Is more data needed to support a
derivable hypothesis considering the
alternatives?

Background Theory
Logic axioms

Uncertainty
> Quantification
v l
List of Pruned list of
hypotheses hypotheses

-

Complexity
& Accuracy

Derivability

Reasoning System

Deductive Reasoning
Theorem prover +

Reasoning/dependency
measures

Modeler Preferences

New formula
discovered!

yes

vy

Re-ranked/pruned list

of hypotheses

\ 4

Are there good candidate | no

answers?

no




The story thus far

Data +
Reasoning Integrated
Integrating both data

and theory in the search

process can improve
search (Al Hilbert)

e e e e e S S S S s ey,

1
Incorrect :
Candidate Formula i

—————

Algebraic Techniques

Background Theory Derived

4 Polynomial Program Semidefinite Program Symbolic Model

4 N ' /
Hyperparameters >
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Proof of Derivability

Data I




Some motivating problems for today




Motivating Example 1

We have a 3x3 integer lattice whose coordinates are in {0,1,2} X {0,1,2} or Z%. What's the largest subset of
points on the lattice so that no three points sum up (coordinate-wise) to (0,0) with addition modulo 37

(0,0) (0,1) (0,2)

(1,0) (1,1) (1,2)

(2,0) (2,1) (2,2)
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What's the largest subset of Z4 with no three points in a line?

"Perhaps my favorite open question” - Terrance Tao, 2007 blog postll.
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We have a 3x3 integer lattice whose coordinates are in {0,1,2} X {0,1,2} or Z%. What's the largest subset of
points on the lattice so that no three points sum up (coordinate-wise) to (0,0) with addition modulo 37

(0,0) 0,1) (0,2)
(1,0) (1,1) (1,2)
(2,0) (2,1) (2,2)

What's the largest subset of Zgi with no three points in a line? Largest sets known only till n = 6. Lower ana
upper bounds are 2.2202¢ and 2.756¢.

"Perhaps my favorite open question” - Terrance Tao, 2007 blog postll.



Motivating Example 2

What is the largest subset of 3x3 lattice such that no three points form an isosceles triangle?
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Motivating Example 2

What is the largest subset of 3x3 lattice such that no three points form an isosceles triangle?

What's the size of the largest subset of an integer lattice with no 3 points forming an isosceles triangle?

“Karan, this would be a cool problem to think about” - Jordan Ellenberg, mathematician and PhD advisor.
- Problem originated from a study of convergence rates on ordinal embeddings!2..
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What is the largest subset of 3x3 lattice such that no three points form an isosceles triangle?
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What's the size of the largest subset of an integer lattice with no 3 points forming an isosceles triangle? Largest sets

known only till n=10.

“Karan, this would be a cool problem to think about” - Jordan Ellenberg, mathematician and PhD advisor.
- Problem originated from a study of convergence rates on ordinal embeddings!2..



Motivating Example 2

What is the largest subset of 3x3 lattice such that no three points form an isosceles triangle?
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What's the size of the largest subset of an integer lattice with no 3 poi]r{;cs forming an isosceles triangle? Largest sets
known only till n=10. Lower and upper bounds are still far apart: e’\/ < S < exp(—c(og N)%)N2
log N

“Karan, this would be a cool problem to think about” - Jordan Ellenberg, mathematician and PhD advisor.
- Problem originated from a study of convergence rates on ordinal embeddings!2..
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(0,0) (0,1) (0,2)
(1,0)‘ (1,1). (1,2)‘

@ O
(2,0)’ (2,1) (2,2)

Question: It you had no prior information, how would you use some of the techniques we have seen so far to
generate examples?



Motivating Example 2

® ® ®
(0,0) (0,1) (0,2)
ol o a7
® ®
(2,0)’ (2,1) (2,2) o ® o o

Question: It you had no prior information, how would you use some of the techniques we have seen so far to
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® Hard to solve (exponential in n~ via brute force)
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® Easy to verify



Motivating Example 2
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(0,0) (0,1) (0,2)
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(1,0)‘ (1,1). (1,2)‘
O O ®

@ O

(2,0)‘ (2,1) (2,2)

Question: It you had no prior information, how would you use some of the techniques we have seen so far to
generate examples?

Key features:

e Hard to solve (exponential in n?

® Easy to verify
® No data available

via brute force)
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In all the approaches we have seen so far, we are learning functions.

Reasoning

Methods
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Design question: What function can we try to learn? This will inform what approach we try.



How might we approach this?

Data + Data +

Data-Driven Automated

: Reasoning
Reasoning lterated

In all the approaches we have seen so far, we are learning functions.

Reasoning

Methods

Integrated

Design question: What function can we try to learn? This will inform what approach we try. One idea: learn a
probability distribution on points on the grid.

F(— ) =P(—)



How might we approach this?

Data-Driven

Methods

In all the approaches we have seen so far, we are learning functions.

Design question: What function can we try to learn? This will inform what approach we try. One idea: learn a
probability distribution on points on the grid.
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Methods . . .
- Can discover lots of internal structure in data.
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How might we approach this?

Advantage of neural-network approaches:

Data-Driven - Universal function approximators - so they can learn various kinds of functions.

Methods . . .
- Can discover lots of internal structure in data.

- Architecture scales for the problems in higher dimensions and degrees well.

Neural Networks
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Transformers
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Methods . . .
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Approach 1: Reinforcement Learning

Spot, Boston Dynamicsl.

RRRRRRRR

AlphaZero: Shedding new light on
chess, shogi, and Go

EEEEEEEEEEEEE

David Silver, Thomas Hubert, Julian Schrittwieser, Demis Hassabis

shogi(Japanese chess), and Go,

AlphaZero, DeepMind!4l.

Reinforcement Learning

A self improvement approach to

machine learning where we need to
learn tasks for which we have little to
no data.

One step lower

Aim: To train an agent with no prior
knowledge to learn a policy for taking
actions in the environment in order to

maximize a reward and achieve a

goal.
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What do we then need to train a reinforcement learning agent:
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What do we then need to train a reinforcement learning agent:

8
1. An environment (the state space of the game). l
2. An action space (the set of actions that change the state). .
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What do we then need to train a reinforcement learning agent:

1. An environment (the state space of the game).
2. An action space (the set of actions that change the state).
3. An agent that will choose actions to move between states.




Approach 1: Reinforcement Learning

What do we then need to train a reinforcement learning agent:

1. An environment (the state space of the game).

2. An action space (the set of actions that change the state).
3. An agent that will choose actions to move between states.
4. A policy function that the agent will use to choose actions.

Policy encoded in network weights

(Warning: The policy is not always the same as
the agent. Eg. Spot, QlLearning, etc)
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5. A value function to assign a score each state.
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Approach 1: Reinforcement Learning

States
. . . The set of all
What do we then need to train a reinforcement learning agent: .
possible subsets
1. An environment (the state space of the game). of the lattice.

2. An action space (the set of actions that change the state).
3. An agent that will choose actions to move between states.
4. A policy function that the agent will use to choose actions.
5. A value function to assign a score each state.

So how does this work for finding large subsets of lattices?
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Approach 1: Reinforcement

What do we then need to train a rein-

1. An environment (the state space o
2. An action space (the set of actions

Learning

‘orcement learning agent:

-the game).
that change the state).

3. An agent that will choose actions to move between states.
4. A policy function that the agent will use to choose actions.
5. A value function to assign a score each state

So how does this work for finding large subsets of lattices?

States
The set of all

possible subsets
of the lattice.

Actions
Adding a point to

an existing given
state.

Agent

Neural Network
that will decide
point placement.




Approach 1: Reinforcement Learning

The game

Define a neural network that takes in the current state of the grid (encoded as a vector) and an index to be considered on
the grid and output a scalar p in [0,1].

e
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Approach 1: Reinforcement Learning
The game

Define a neural network that takes in the current state of the grid (encoded as a vector) and an index to be considered on
the grid and output a scalar p in [0,1]. Add the point with probability p.
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Approach 1: Reinforcement Learning
The game

Define a neural network that takes in the current state of the grid (encoded as a vector) and an index to be considered on
the grid and output a scalar p in [0,1]. Add the point with probability p. Repeat with the next index
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Approach 1: Reinforcement Learning
The game

Define a neural network that takes in the current state of the grid (encoded as a vector) and an index to be considered on

the grid and output a scalar p in [0,1]. Add the point with probability p. Repeat with the next index and so on until we
have checked every index.
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The game

Define a neural network that takes in the current state of the grid (encoded as a vector) and an index to be considered on

the grid and output a scalar p in [0,1]. Add the point with probability p. Repeat with the next index and so on until we
have checked every index.

The evaluation

Sample lots ot games (~2000)

Sampled Games
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Approach 1: Reinforcement Learning

The game

Define a neural network that takes in the current state of the grid (encoded as a vector) and an index to be considered on

the grid and output a scalar p in [0,1]. Add the point with probability p. Repeat with the next index and so on until we
have checked every index.

The evaluation

Sample lots of games (~2000) and assign a score to each one. Filter out the top k % .

Sampled Games . : Best Games
Sample Scoring Function

Score = # of points - A(# of isosceles As)

Note:
The scoring here is smooth. Binary /
categorical scoring would be worse.

Score =5

Score =3 Score=1
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The Reinforcement Learning

Treat the best games as ‘ground truth’ and train the network on them.
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Results
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Size of largest set for n

Best Reward
Lower Bound

Seems
better than known
lower bound
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Algorithm Background

Adapted from work by Adam Wagnerb!:

Constructions in combinatorics via neural networks

Adam Zsolt Wagner*

Abstract

We demonstrate how by using a reinforcement learning algorithm, the deep cross-entropy method,
one can find explicit constructions and counterexamples to several open conjectures in extremal
combinatorics and graph theory. Amongst the conjectures we refute are a question of Brualdi and
Cao about maximizing permanents of pattern avoiding matrices, and several problems related to the
adjacency and distance eigenvalues of graphs.

1 Introduction

Computer-assisted proofs have a long history in mathematics, including breakthrough results such as
the proof of the four color theorem in 1976 by Appel and Haken (7], and the proof of the Kepler
conjecture in 1998 by Hales [29]. Recently, significant progress has been made in the area of machine
learning algorithms, and they have have quickly become some of the most exciting tools in a scientist’s
toolbox. In particular, recent advances in the field of reinforcement learning have led computers to
reach superhuman level play in Atari games [39] and Go [41], purely through self-play.

Aim: Use this algorithm to generate
counterexamples to conjectures in combinatorics
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Computer-assisted proofs have a long history in mathematics, including breakthrough results such as
the proof of the four color theorem in 1976 by Appel and Haken [7], and the proof of the Kepler
conjecture in 1998 by Hales [29]. Recently, significant progress has been made in the area of machine
learning algorithms, and they have have quickly become some of the most exciting tools in a scientist’s
toolbox. In particular, recent advances in the field of reinforcement learning have led computers to
reach superhuman level play in Atari games [39] and Go [41], purely through self-play.
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counterexamples to conjectures in combinatorics
Not a counterexample..... but it leads to one
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Approach 1: Reinforcement Learning

Alternative: Use a transformer + local search instead!

PatternBoost: Constructions in Mathematics with a Little Help
from Al
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Abstract

We introduce PatternBoost, a flexible method for finding interesting constructions in math-
ematics. Our algorithm alternates between two phases. In the first “local” phase, a classical
search algorithm is used to produce many desirable constructions. In the second “global” phase,
a transformer neural network is trained on the best such constructions. Samples from the trained
transformer are then used as seeds for the first phase, and the process is repeated. We give a de-
tailed introduction to this technique, and discuss the results of its application to several problems
in extremal combinatorics. The performance of PatternBoost varies across different problems, but
there are many situations where its performance is quite impressive. Using our technique, we
find the best known solutions to several long-standing problems, including the construction of a
counterexample to a conjecture that had remained open for 30 years.
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Approach 1: Reinforcement Learning

Alternative: Use a transformer + local search instead!
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Figure 11: The best constructions for n = 4 to 10
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Figure 12: The best constructions for n = 16, 27, and 32. For some n, there are many optimal solutions
that look very different from each other.



Approach 1: Reinforcement Learning

Alternative: Use a transformer + local search instead!
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Traditional Neural Approaches have drawbacks.

Drawback

Data-Driven

Methods 1. Results are usually less interpretable. The
mechanism behind the generation is difficult to

understand.

Neural Networks

o
'gf:%'%'\ 2. For different input sizes, we might have to
N2 train a new model. So difficult to test
generalization.

Transformers
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Methods Reasoning lterated Integrated

Generating Functions

The methods we have looked at are approaches for generating functions. Instead of generating
functions, we will focus on generating algorithms.
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Data-Driven Automated Data + Reasoning Data + Reasoning

Methods Reasoning lterated Integrated

Generating Functions

The methods we have looked at are approaches for generating functions. Instead of generating
functions, we will focus on generating algorithms.

Generating

FunSearch
Algorithms




Aim: Train a large language model to generate code that we can use to
construct examples.
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Abstract

Large language models (LLMs) have demonstrated tremendous capabilities in solving
complex tasks, from quantitative reasoning to understanding natural language. However,
LLMs sometimes suffer from confabulations (or hallucinations), which can result in them
making plausible but incorrect statements’2. This hinders the use of current large modelsin

scientific discovery. Here we introduce FunSearch (short for searching in the function space),

For the purposes of this talk, we will follow the work on FunSearch, by DeepMindlé
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Algorithms and LLMs

Need to be careful: LLMs by themselves cannot solve complex reasoning tasks. Solutions may not
be plausible / might hallucinate
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Algorithms and LLMs

Given the Capset problem, we can represent the solution to the problem in two ways.

Via a set of points

O ®
(0,0) (0,1) (0,2)
(1,0)‘ (1,1)‘ (1,2)
(2,0) (2,1) (2,2)

Advantage of expressing as an algorithm:

Via an algorithm

def build_cap_set(dim):

return [elem for elem in grid(dim) if is_in_capset(elem)]

def is_in_capset(elem):

return (elem[0] == 0 and elem[1l] <= 1)

1. We can verity the correctness of an algorithm quickly (evaluation is easy)
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Via a set of points
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Advantage of expressing as an algorithm:

Via an algorithm

def build_cap_set(dim):
return [elem for elem in grid(dim) if is_in_capset(elem)]

def is_in_capset(elem):
return (elem[0] == 0 and elem[1] <= 1)

1. We can verity the correctness of an algorithm quickly (evaluation is easy)

2. We can test the generating mechanism on cases out of the training distribution (can study

generalization)



Algorithms and LLMs

Key tool for generating code: Large Language Models.

Large Language Models have shown widespread success in code generation. Example below:
Evaluation of various models on the HumanEval and MBPP benchmarkslé.

Model Size HumanEval MBPP
pass@Ql pass@10 pass@100 | pass@Ql pass@Q10 pass@100
code-cushman-001 12B | 33.5% - - 45.9% : -
GPT-3.5 (ChatGPT) -| 48.1% E E 52.2% : -
GPT-4 -1 67.0% - - - - -
PaLM 540B | 26.2% - - 36.8% : -
PaLLM-Coder 540B | 35.9% - 88.4% | 47.0% - -
PaLM 2-S - 37.6% - 88.4% | 50.0% - -
StarCoder Base 15.5B | 30.4% - - 49.0% - -
StarCoder Python 15.5B | 33.6% - - 52.7% - -
StarCoder Prompted 15.5B | 40.8% - - 49.5% : :
B| 12.2% 25.2% 44.4% | 20.8% 41.8% 65.5%
LLAMA 2 13B| 20.1% 34.8% 61.2% | 27.6% 48.1% 69.5%
34B| 22.6% 47.0% 79.5% | 33.8% 56.9% 77.6%
70B | 30.5% 59.4% 87.0% | 45.4% 66.2% 83.1%
7B| 33.5% 59.6% 85.9% | 41.4% 66.7% 82.5%
CODE LLAMA 13B| 36.0% 69.4% 89.8% | 47.0% 71.7% 87.1%
34B | 48.8% 76.8% 93.0% | 55.0% 76.2% 86.6%
70B | 53.0% 84.6% 96.2% | 62.4% 81.1% 91.9%
7B| 34.8% 64.3% 88.1% | 44.4% 65.4% 76.8%
CODE LLAMA - INSTRUCT 13B| 42.7% 71.6% 91.6% | 49.4% 71.2% 84.1%
34B| 41.5% 77.2% 93.5% | 57.0% 74.6% 85.4%
70B| 67.8% 90.3% 97.3% | 62.2% 79.6% 89.2%
UNNATURAL CODE LLAMA  34B| 62.2% 852%  95.4% | 61.2% 76.6%  86.7%
7B | 38.4% 70.3% 90.6% | 47.6% 70.3% 84.8%
CODE LLAMA - PYTHON 13B| 43.3% 77.4% 94.1% | 49.0% 74.0% 87.6%
34B| 53.7% 82.8% 94.7% | 56.2% 76.4% 88.2%
70B| 57.3% 89.3% 98.4% | 65.6% 81.5% 91.9%
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Key tool for generating code: Large Language Models.

Large Language Models have shown widespread success in code generation. Example below:
Evaluation of various models on the HumanEval and MBPP benchmarkslé!.

Model Size HumanEval MBPP
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34B | 41.5% 77.2% 93.5% 57.0%  74.6% 85.4% SO _..can we Just get G PT to
70B| 67.8% 90.3% 97.3% | 62.2% 79.6% 89.2%
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Algorithms and LLMs

Need to be careful: LLMs by themselves cannot just solve complex reasoning tasks.

import itertools

~def squared_dist(pl, p2):

return (pl[0] - p2[0])*xx2 + (pl[1l] - p2[1])*x*2 lsoscelesTriangIe-Fgc_ee Sut;s4et on 64x64 Lattice
1Zze =
® @ o0 o
~def forms_isosceles(p, subset): 60 4 ; . .. .‘ ° ..
# Check if adding point p to subset creates any isosceles triangle
# Iterate all pairs in subset and check distances g$* o
for a, b in itertools.combinations(subset, 2): 0l 8 e ® ° °
dl = squared_dist(p, a)
d2 = squared_dist(p, b) *
d3 = squared_dist(a, b) 40_£' o
# Check if any two sides are equal (including zero distance means points coincide) ) o
# Skip degenerate triangles where points coincide (distance zero)
sides = [d1, d2, d3] " 018 o® °
if @ in sides: 8 o °
continue
if d1 == d2 or dl1 == d3 or d2 == d3: 20
return True
return False
8 o ¢
. 10-' L
- def generate_isosceles_free_subset(n):
lattice_points = [(x, y) for x in range(n) for y in range(n)] 8 oo ° . oo
subset = [] 0.8 oo o e o
for p in lattice_points: 0 10 20 30 40 50 60
if not forms_isosceles(p, subset): X
subset.append(p)

return subset

GPT4o0 one-shot attempt at writing code to generate an algorithm that generates isosceles-free sets. While a human might not
have written that example by hand, the code shows that it's a greedy algorithm! One could have certainly done that!
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Funsearch Overview

Key features of our problems:

® Easy to verity - We can build a filter for incorrect / bad programs

® No data available - We will rely on some self improvement

® Smooth Scoring - We can make gradual improvements to the code

FunSearch
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Funsearch Code Improvement

The role of the Large Lanquage Model

Take a code that works, make a small

improvement to it.




Funsearch Code Improvement —omle s e
Large Language Model

We'll start with a code that builds capsets (likely sub-optimally)

Take a code that works, make a

small improvement to it.

def evaluator(dim):
subset = build capset(dim)
return len(subset) if is capset(subset) else 0

def build capset(dim):
return [elem for elem in grid(dim) if is_in_capset(elem)]

def is_in capset v0@(elem):
return (elem[0]==0 and elem[1]<=1)

Example Slide from Matej Balog CMSA talk®]



The role of the
Large Language Model

Funsearch Code Improvement

We'll prompt the LLM to make an improvement in the code. Take a code that works. make a

small improvement to it.

def evaluator(dim):
subset = build capset(dim)
return len(subset) if is capset(subset) else 0

def build capset(dim):
return [elem for elem in grid(dim) if is_in_capset(elem)]

def is_in capset v0@(elem):
return (elem[@]==0 and elem[1]<=1)

def is_in_capset vl(elem):

"""Tmproved version of is_in_capset_v@""" (Generated by LLM
return (elem[@] <=1 ) and elem([0] <= 1)

Example Slide from Matej Balog CMSA talk®]



The role of the

Funsearch Code Improvement
Large Language Model

We'll prompt the LLM to make an improvement in the code. Take a code that works. make a

small improvement to it.

def evaluator(dim):
subset = build capset(dim)
return len(subset) if is capset(subset) else 0

def build capset(dim):
return [elem for elem in grid(dim) if is_in_capset(elem)]

def is_in capset v0@(elem):

return (elem[01==0 and elem[1]<=1) Gives size 2 capset in dim 2

def is_in_capset vl(elem):
"""Tmproved version of is_in_capset_v@""" Gives size 4 capset in dim 2
return (elem[@] <=1 ) and elem([0] <= 1)

Example Slide from Matej Balog CMSA talk®]



Funsearch Code Improvement —omle s e
Large Language Model

, . : |
We'll substitute the new code in and repeat! Take a code that works, make

small improvement to it.

def evaluator(dim):
subset = build capset(dim)
return len(subset) if is capset(subset) else 0

def build capset(dim):
return [elem for elem in grid(dim) if is_in_ capset(elem)]

def is_in_capset v@(elem):
return (elem[@] <=1 ) and elem([0] <= 1)

def is_in_capset _vl(elem): :

""H"Improved version of 1s_in_capset_vo"""

Example Slide from Matej Balog CMSA talk®]



Funsearch Code Improvement —omle s e
Large Language Model

, . : |
We'll substitute the new code in and repeat! Take a code that works, make

small improvement to it.

def evaluator(dim):
subset = build capset(dim)
return len(subset) if is capset(subset) else 0

def build capset(dim):
return [elem for elem in grid(dim) if is_in_capset(elem)]

def is _in capset v@(elem):
return (elem[@] <=1 ) and elem([0] <= 1)

def is_in_capset _vl(elem): D

" Improved version of 1s_in_capset_vo"""

But we need to be careful: Iteratively improving the same candidate can lead to local minima.

Example Slide from Matej Balog CMSA talk®]
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But we need to be careful: Iteratively improving the same candidate can lead to local minima.

We want to have multiple different perturbations of the code that we can study over time.



Funsearch Code Improvement

Solution

(Genetic
Evolution

But we need to be careful: Iteratively improving the same candidate can lead to local minima.

We want to have multiple different perturbations of the code that we can study over time.



Funsearch Genetic Algorithm

Earlier in the summer school, we saw an application of a genetic algorithm:

Initial population

w w
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Funsearch Genetic Algorithm

In order to implement a genetic evolution algorithm, we need:
1. An initialization of the population

2. A mutation mechanism for each population

3. A score to test for which species survive



Funsearch Genetic Algorithm

Initial Program

def function_to_evolve(inputs):
return math.random()

In order to implement a genetic evolution algorithm, we need:

1. An initialization of the population
2. A mutation mechanism for each population
3. A score to test for which species survive

Database of programs partitioned into islands

def fun_1(): def fun_3():

def fun_2(): def fun_4():

def fun_5(): def fun_7():

def fun_6(): def fun_8():




Funsearch Genetic Algorithm

def fun_1():

def fun_1():
def fun_2():
def fun_2.5():

In order to implement a genetic evolution algorithm, we need: def fun_20):
1. An initialization of the population

2. A mutation mechanism for each population
3. A score to test for which species survive

def fun_1():

Database of programs partitioned into islands def fun_2():

def fun_1(): def fun_3():
def fun_2(): def fun_4():
def is_in_capset v@(elem):

return (elem[0@]==0 and elem[1]<=1)

def is _in capset vil(elem):
" Improved version of 1s_in_capset_vo"""
return (elem[@] <=1 ) and elem([0] <= 1)

def fun_5(): def fun_7():

def fun_6(): def fun_8():




Funsearch Genetic Algorithm

def fun_1():

def fun_1():
def fun_2():
def fun_2.5():

In order to implement a genetic evolution algorithm, we need: def fun_20):
1. An initialization of the population

2. A mutation mechanism for each population
3. A score to test for which species survive

def fun_1():

Database of programs partitioned into islands def fun_2():

def fun_1(): def fun_3(): def fun_1(): def fun_3():
def fun_2(): def fun_4():

def fun_2(): def fun_4():
def fun_2.5(): def fun_4.5():

def fun_5(): def fun_7(): def fun_5(): def fun_7():
def fun_6(): def fun_8():
def fun_6(): det fun_8(): def fun_6.5(): def fun_8.5():




Funsearch Genetic Algorithm

In order to implement a genetic evolution algorithm, we need:
1. An initialization of the population

2. A mutation mechanism for each population

3. A score to test for which species survive

Score fun_1(): Score fun_3():
Score fun_2(): Score fun_4():
Score fun_2.5() Score fun_4.5();

def fun_1(): def fun_3():
def fun_2(): def fun_4():
def fun_2.5(): def fun_4.5():

Evaluator

Score fun_7():

def fun_7(): Score fun_5():

Score fun_6(): Score fun_8j():

Score fun_6.5( Score fun_8.5();

def fun_5():
def fun_6(): def fun_8():
def fun_6.5(): def fun_8.5():




Funsearch Genetic Algorithm

In order to implement a genetic evolution algorithm, we need:
1. An initialization of the population

2. A mutation mechanism for each population

3. A score to test for which species survive

Repeat until satistied!

Score fun_1(): Score fun_3():
Score fun_2(): Score fun_4():
Score fun_2.5() Score fun_4.5();

def fun_1(): def fun_3():
def fun_2(): def fun_4():
def fun_2.5(): def fun_4.5():

Evaluator

Score fun_7():

def fun_7(): Score fun_5():

Score fun_6(): Score fun_8j():

Score fun_6.5( Score fun_8.5();

def fun_5():
def fun_6(): def fun_8():

def fun_6.5(): def fun_8.5():




Funsearch Genetic Algorithm

In order to implement a genetic evolution algorithm, we need:
1. An initialization of the population

2. A mutation mechanism for each population

3. A score to test for which species survive

Repeat until satistied!

Score fun_1(): Score fun_3():
Score fun_2(): Score fun_4():
Score fun_2.5() Score fun_4.5();

def fun_1(): def fun_3():
def fun_2(): def fun_4():
def fun_2.5(): def fun_4.5():

Evaluator

Score fun_7():

def fun_7(): Score fun_5():

Score fun_6(): Score fun_8j():

Score fun_6.5( Score fun_8.5();

def fun_5():
def fun_6(): def fun_8():

def fun_6.5(): def fun_8.5():




Funsearch Genetic Algorithm

Leveraging three things here:

1. Our ability to run inference in parallel
2. Our ability to evaluate fast in parallel
3. LLM ‘creativity’.

def fun_1(): def fun_3():
def fun_2(): def fun_4():
def fun_2.5(): def fun_4.5():

def fun_5(): def fun_7():

def fun_6(): def fun_8i):
def fun_6.5(): def fun_8.5():

Evaluator

Score fun_1():
Score fun_2():

Score fun_2.5()

Score fun_5():

Score fun_6():
Score fun_6.5()

Score fun_3():

Score fun_4():
Score fun_4.5();

Score fun_7():
Score fun_8():

Score fun_8.5();




[.et’s see how this works from
Input to output!



Funsearch Input

We input three functions.

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll
L/

This function

is the ‘prior
knowledge’ function
that will build outputs
(say, capsets) using
the function
funsearch designs.

Program Specification

This is the
function funsearch
will learn through the
genetic algorithm.
You define what the
input features you
want the function to
consider and what to
output

Evaluate

This function
is the evaluator that

determines what
score to assign each
program. It will first
solve the problem
using the solve
function then
evaluate the output.

0..
L 4

L 2
L 2 Q‘
* .
.....
llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll



Funsearch Input

This function

1S the ‘prior
knowledge’ function
that will build outputs
(say, capsets) using
the function
funsearch designs.

def solve(n: int):
"Returns a large isosceles—free subset of the integer lattice"
#Generate list of all lattice coordinates
all_points = list(itertools.product({0,1,2}, repeat=n))
#Assign a welight to each point
priorities = [priority(point) for point in all_points]
#Initialize capset
capset = []
while np.any(priorities != —-np.inf):
#Find the highest priority point
max_index = argmax(priorities)
max_point = all_points[max_index]
#Add 1t to the set if we don't form a capset
if is_capset(capset.copy()append(max_point)):
capset.append(max_point)
#Remove the point from future consideration
priorities[max_index] = -np.inf
return capset



Funsearch Input

def solve(n: int):
"Returns a large isosceles—-free subset of the integer lattice"

all_points = .product , 1,2y, repeat=n
#Assign a weight to each point
priorities = [priority(point) for point in all_points]

capset =
This is the
function funsearch
will learn through the
genetic algorithm. @funsearch.evolve
You define what the def prlorlty(pOlnt) .

input features you
want the function to
consider and what to
output return 0.0

"Returns the weight to assign the point"
"Higher weight —> higher priority to select point first"




Funsearch Input

Evaluate

This function
is the evaluator that

determines what
score to assign each
program. It will first
solve the problem
using the solve
function then
evaluate the output.

def solve(n: int):
"Returns a large isosceles—-free subset of the integer lattice"

. product ,1,2), repeat=n),

all_points

point point all _points.

priorities

capset = |[.

@funsearch. run

def evaluator(n: int):
"Returns the size of an n-dimensional capset"”
capset = solve(n)
return len(capset)



Funsearch Evolution Step

e \We will initialize some number of islands/independent databases with copies of our initial function to
evolve. For each island, we will develop a database of program.

def priority_1(): def priority_3():
def priority_2(): def priority_4():

def priority_5(): def priority_7():

def priority_6(): def priority_8():




Funsearch Evolution Step

® We will initialize some number ot islands/independent databases with copies of our initial function to
evolve. For each island, we will develop a database of program.

® \We repeat the evolutionary algorithm for each island for as many iterations as desired.

FunSearch

Evaluation

Pretrained LLM

o

e > =
Specification : \ New program
5 / =]|—
def priority_1(): e : iT=_
def priority_2(): (D
| I - e
= [E=
Programs

database



Funsearch Evolution Step

e \We will initialize some number of islands/independent databases with copies of our initial function to
evolve. For each island, we will develop a database of program.

® \We repeat the evolutionary algorithm for each island for as many iterations as desired.

® Some islands might converge to suboptimal solutions. We therefore periodically reset the islands and seed
them with good performing programs from the surviving islands.

def priority_1(): def priority_1(): def priority_2():
def priority_2(): , def priority_2(): def priority_7/():

After many iterations

def priority_7(): def priority_1(): def priority_7/():
def priority_8(): def priority_7(): def priority_8():




Funsearch Output and Results

® This method was used to discover the largest known Capset at size n=8.

® This was used to extend the best known lower bound at the time from 2.2173" to the now best 2.2202".

Dimension n 2 3 4 5 6 / 8
Previous best construction 4 9 20 45 112 236 496

FunSearch construction 4 9 20 45 112 236 512



Funsearch Output and Results

def priority(el: tuplel[int,...],
< n: int) -> float:

score = n

in el = 0

el count = el.count (0)

if el count == 0:
score += n**2
if el[l] == el[-1]:
score *= 1.5
if el[2] == el[-2]:
score *= 1.5
if el[3] == el[-3]:
score *= 1.5
else:
. . . . if el[l] == el[-1]:
Priority function that is score *= 0.5
if el[2] == el[-2]:
used to generate the score *= 0.5
largest known capset for e in el:
1if e == 0:
for n=8. if in el == 0:
score *=n * 0.5
elif in el == el count - 1:
score *= 0.5
else:

score *=n * 0.5 ** in el
in el += 1
else:
score += 1

if el[1l] == el[-1]:
score *= 1.5

if el[2] == el[-2]:
score *= 1.5

return score



Funsearch Output and Results

support = : ple(1 for 1 1n range(n) if v[1] == 0)
stamp = | : tuple - L : 2 * 1+ 2].count(0) for 1 1in range(n // 2))
Shorter code was 6 rveturn|
. ; i v 1n itertools.product(range(3), repeat=n
found later using the - L TS 3. 5), (1, 2, 4), (0, 3, 4),

’

same method c stamp(v) ==

~
stamp(v) == (1,
len(support(v)

len(support(v)

len(support(v)




Funsearch Output and Results

® \What about the isosceles free subset problem?




Funsearch Output and Results

® Results on this will follow our recent arXiv submission!10l,

ADV. THEOR. MATH. PHYS.
Volume NN, Number 1, 701-722, 2025

Generative Modeling for Mathematical
Discovery

Built a working, open source
Implementation of funsearch
designed for working
mathematicians

Jordan S. Ellenberg?, Cristofero S. Fraser-Taliente®, Thomas R. Harvey®<,
Karan Srivastava?®, and Andrew V. Sutherland®

#University of Wisconsin-Madison
bUniversity of Oxford
“Massachusetts Institute of Technology
dThe NSF Institute for Artificial Intelligence and Fundamental Interactions

Tested the capabilities of funsearch

We present a new implementation of the LLM-driven genetic algo- on VariOUS mOdels
rithm funsearch, whose aim is to generate examples of interest to

mathematicians and which has already had some success in prob-
lems in extremal combinatorics. Our implementation is designed
to be useful in practice for working mathematicians; it does not re-

quire expertise in machine learning or access to high-performance -
computing resources. Applying funsearch to a new problem involves StUd Ied resu Its fo r fu N SearCh on
modifying a small segment of Python code and selecting a large the ISOSC6|eS free problem _

language model (LLM) from one of many third-party providers.
We benchmarked our implementation on three different problems,
obtaining metrics that may inform applications of funsearch to

focussing on generalization outside
new problems. Our results demonstrate that funsearch successfully the tral n | ng Set.

learns in a variety of combinatorial and number-theoretic settings,
and in some contexts learns principles that generalize beyond the
problem originally trained on.




Funsearch Output and Results

def solve(n: int) —> list[tuplel[int, int]]:
""HReturns a large isosceles—free subset of an n by n integer lattice."""
# Generate all possible points in the n x n lattice
all_points = list(itertools.product(range(n), repeat=2)) # List of tuples (x, y)

We can design a very # Precompute priorities for all points
np.array([priority(point, n) for point in all_points], dtype=float)

similar program specitication! priorities

- # Initialize the 1sosceles-free subset
The solve function is almost

subset = []
the exact same - a greedy
algorithm moving in order of # Add points to the subset in order of their priority
while np.any(priorities != -np.inf):

high to low priority weights

# Find the point with the highest priority
max_index = np.argmax(priorities)
point = all_points[max_index]

assigned to each node.

The evaluation and

initialization priority are the # Check if adding this point creates an isosceles triangle
. if not forms_isosceles_triangle(subset, point):
subset.append(point)

# Mark this point as processed
priorities[max_index] = -np.inf

return subset



Funsearch Output and Results

® Basic models here refer to our funsearch runs with the specification files.

® The learned models don’t outperform SOTA. However, we should note that the original funsearch paper
reported to use that for reproducibility of some of their results, 15 instances ot StarCoder-15B running on
A100 40 GB GPU each and 5 CPU servers (each running 32 evaluators in parallel) for two days, with an
estimate that when running on Google Cloud, the price of an experiment is around $800 — $140018l. We ran
trained these models for 30 minutes with ~$2 worth of tokens on mistral-tiny with an 8-core M2 MacBook.

problem setup 15173716 [21 23 [ 25|27 |32 | 64

maximum known | 20| 22| 28| 36 | 40 | 44 | 48 | 56 | 110
basic models 201 201 26| 34| 36| 40| 40 | 46 | 86"

So what can we say about the functions?

*We had a run improve to 96 when run with GPT40 with 10x the number of tokens.



Funsearch Output and Results

Advantage 1: We can see what the priority function looks like.

def forw_9(v: tuplelint, ...], n: int) —> float:
center = (n // 2, n // 2)
dx, dy = abs(v|[@] - center[0]), abs(v[1l] - center[1])
def weight_func(d: float) —> float:
return 1 - (1 / (1 + np.exp(-0.1 % (d - 0.5 %x n))))
weight = weight_func(np.sqrt(dx**x2 + dy*x2))
penalty = le-5 if dx == dy else 0

if dx != dy:

bonus = (np.abs(dx - dy) - 1) / (n = 1) if np.abs(dx — dy) < n - 1 else 0
else:

bonus = 0

boundary_bonus = 0.1 x np.max([dx, dy])
return ((dx*x2 + dyxx2 x weight) *x 0.5 + (1 - weight) *x (abs(dx - dy) + penalty) + bonus + boundary_bonus)

This model was trained to construct isosceles-free sets on a 9x9 grid.



Funsearch Output and Results

Advantage 1: We can see what the priority function looks like.

Basic n=9 Model
Size=16

-
o

O
(o]

Normalized Priority

O
o

O
~

O
N

O
o

This model was trained to construct isosceles-free sets on a 9x9 grid. We can also visualize the priority function by
plotting the priorities. There is, for example, a clear L2 preterence (as expected).



Funsearch Output and Results

Advantage 2: We can test the generation mechanism on values it was not trained on.

Isosceles-free Subset Size Comparison

— Basic n=9 Model
. Base n=16

100 4 —— Base n=8,16,24
—— L2 Priority , ‘

Aot

v (>
% 60 - W PAX
e
v ‘/ /
.
40 A / \vM
N
N
N
20 - ‘ /’ Y
e
10 20 30 40 50 60 70 80

Grid Size (n)

The model trained on n=9 generalizes better than the other models. It even generalizes better than models
trained on multiple different input values during training including a model that just prioritizes L2 distance from

the center. So we can infer that the model is learning more than just that.



Funsearch Output and Results

Advantage 3: It's relatively easy to change the code to create new experiments.

f we want to ‘mod out’

the effect of the L2 norm, we could change the distance function to embed the problem on a torus.
Everything else stays the samel!

def distance(pl: Tuplel[int, int], p2: Tuplelint, int]) -> float:
return (p1[0] - p2[0])*x2 + (pl[1] - p2[1])**2

def

torus_distance(pl: tuplelint, int], p2: tuplelint,int], rows, cols):

il = pll(0]
jl1 = p1[1]
i2 = p2[0]
j2 = p2[1]

if j2 > jl:

dl = j2 - jl
else:

dl = j1 - j2
if d1 > cols - dl:

dl = cols - d1

if 12 > il:

d2 = 12 - il
else:

d2 = 11 - 12
if d2 > rows - d2:

d2 = rows - d2

return dlxx2 + d2xx2



Funsearch Output and Results

Advantage 3: It's relatively easy to change the code to create new experiments. It we want to ‘mod out’
the effect of the L2 norm, we could change the distance function to embed the problem on a torus.

Everything else stays the same!

def tor_rand_points_8 50 _v1(v: tuplel[int, ...], n: int) -> float:
""1Returns the priority, as a floating number, of the vector v denoting the coordinates of a point in the n by n integer lattice.

The priority function will be used to construct an isosceles-free subset of the lattice.

mnin
row, col = v

distance = torus_distance((row, col), (n//2, n//2), n, n)
return (1.0 - (distance / (n//2)) *x 2) xkx 2 + 0.002 x np.abs(np.sin(0.01 x col) + 0.1 % np.sin(0.02 x row)) + 0.001 * np.cos(0.001 x (col + row))

Trained on random n values in [8,50], Len=30

o © o © Lo
N 4 ()] (o] o
Normalized Priority (0 to 1)
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Funsearch Output and Results

Advantage 3: It's relatively easy to change the code to create new experiments. It we want to ‘mod out’
the effect of the L2 norm, we could change the distance function to embed the problem on a torus.
Everything else stays the same!

Subset Lengths vs Grid Size (n = 8 to 80)

Trained on n=16
Trained on n=20 /\
(N

h“.
Trained on n=8 to 20 . .,
MY
Random Priority

Trained on random n values in [8,50] .
\NV o
_ ,li\“ ‘ '\v
| VilAL
v

60 A

Subset Length
-
o
'Q)y
- \‘
«t‘
> -

W
o
1

20 - ‘\
10 - ; ' N

10 20 30 40 50 60 70 80
n (Grid Size)



Funsearch Output and Results

Advantage 3: It's relatively easy to change the code to create new experiments.

A small change in the evaluation during training can result in a different but interesting problem.

def evaluate(n: int) —> int:
""HUReturns the size of an 1sosceles—free subset of an n by n integer lattice.
subset = solve(n)
return len(subset)

def evaluate(n: int) —> int:
"HHReturns the size of an 1sosceles—-free subset of an n by n integer lattice."""
subset = solve(n)
return -len(subset)

Here, we're finding small, maximal isosceles-free subsets of the lattice instead of large ones!



Funsearch Output and Results

Advantage 3: It's relatively easy to change the code to create new experiments.

#ttH# Reverse Priorities (Removing points) ##t####
def rev_9(v: tuplel[int,...], n: int) -> float:
X, Y=V
vector_magnitude = np.linalg.norm([x, y])
diff = abs(x - vy)
return 0.5 x (1.0 / (diff + 1) + 0.1 % (vector_magnitude *xx 0.5)) + 0.05 x (n - vector_magnitude) - 0.001 *x (x + y) + 0.0001 x (X %k 2 + y %k 2)

Trained on nin [8,50], Len=28
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Funsearch Output and Results

Advantage 4: It is easy to build in prior knowledge. Just code it into the solve function.
We saw earlier that some of the best functions were found by enforcing some symmetry.

£(16) = 28

£(16) = 28
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Funsearch Output and Results

Advantage 4: It is easy to build in prior knowledge. Just code it into the solve function.

We saw earlier that some of the best functions were found by enforcing some symmetry. Even it we didn’t see that
beforehand, we see that the model trained on n=9 learned a symmetric solution. Almost true outside training
distribution.

Basic n=9 Model

Basic n=9 Model Size—46

Size=16
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Normalized Priority
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Funsearch Output and Results

Advantage 4: It is easy to build in prior knowledge. Just code it into the solve function.

We saw earlier that some of the best functions were found by enforcing some symmetry. Even it we didn’t see that
beforehand, we see that the model trained on n=9 learned a symmetric solution. Almost true outside training
distribution. So we can change the solve function to enforce symmetry.

def solve_symmetry(n: int, priority_func: Callable, sym: str, skkwargs) -> List[Tuplel[int, int]]:
"""Finds a large isosceles—-free subset with enforced symmetry."""

all_points = get_valid_points(n, sym)

priorities = np.array([priority_func(p, n) for p in all_points], dtype=float)

subset = []

while np.any(priorities != -np.inf):
max_index = np.argmax(priorities)
point = all_points[max_index]
new_points = generate_symmetric_points(point, n, sym)

copy = subset.copy()

copy.extend(new_points)

if is_isosceles_free(copy):
subset.extend(new_points)

priorities[max_index] = -np.inf
return subset



Funsearch Output and Results

Advantage 4: It is easy to build in prior knowledge. Just code it into the solve function.

def sym_xpmy_random_n_8 50(v: tuplel[int, ...], n: int) -> float:
"""Returns the priority, as a floating number, of the vector v denoting the coordinates of a point in the n by n lattice:-
X, Y=V
diff = abs(x - y)
midpoint = n // 2
diagonal_distance = abs(x + y = n)
odd_x or.y = (x %2 ==1) or (y %2 == 1)
return (diff + diagonal_distance + abs(np.abs(x - midpoint) - np.abs(y - midpoint)) + (1 if odd_x_or_y else 0)) / 2

Trained on nin [8,50], Xx=+-y symmetry
Size=64
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Funsearch Output and Results

Advantage 4: It is easy to build in prior knowledge. Just code it into the solve function.
This gives us both better results and better generalization.

n

problem setup 1511316 |21 ] 23 | 25| 27 | 32 | 64

maximum known | 20| 22 | 28| 36| 40| 44 | 48 | 56 | 110

basic models 201 20| 26 | 34 | 36 | 40 | 40 | 46 | 86"

symmetric models | 20 | 22 | 28 | 36 | 40 | 40 | 44 | 52 | 96

Isosceles-free Subset Size Comparison

— Basic N=9 Model

Symmetric n=27 Model - (Z/2Z)"2 \
1001 Symmetric n=27 Model - x=y J,’Qo/
—— Symmetric n= 8 to 20 Model - (2/2Z)"~2 " J \,
— 5 tric n in [8,50] Model - x=+- |
ymmetric n in [8,50] Model - x y A /'A'b\}”
—— Random '
80 A 'é

60 -

Subset Size

40 -

/.
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Funsearch Output and Results

Caution: Changing the approach, even in mathematically equivalent ways, can change the performance.

Trained on n=16, Len=8

Instead of starting with an empty set and learning
how to add points, we started with a dense set
and learned how to remove points.

1.0
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Funsearch Output and Results

Caution: Changing the approach, even in mathematically equivalent ways, can change the performance.

Isosceles-Free Subsets for n=32
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Caution: Changing the approach, even in mathematically equivalent ways, can change the performance.
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Updates in this space

FunSearch has a successor, AlphaEvolve, DeepMind June 2025011,

3131v1 [cs.AI] 16 Jun 2025

Google DeepMind

AlphaEvolve: A coding agent for scientific and
algorithmic discovery

Alexander Novikov ', Ngan Vii', Marvin Eisenberger*, Emilien Dupont*, Po-Sen Huang*, Adam Zsolt Wagner*,
Sergey Shirobokov”, Borislav Kozlovskii", Francisco J. R. Ruiz, Abbas Mehrabian, M. Pawan Kumar, Abigail

See, Swarat Chaudhuri, George Holland, Alex Davies, Sebastian Nowozin, Pushmeet Kohli and Matej Balog*
Google DeepMind!

In this white paper, we present AlphaEvolve, an evolutionary coding agent that substantially enhances
capabilities of state-of-the-art LLMs on highly challenging tasks such as tackling open scientific problems
or optimizing critical pieces of computational infrastructure. AlphaEvolve orchestrates an autonomous
pipeline of LLMs, whose task is to improve an algorithm by making direct changes to the code. Using
an evolutionary approach, continuously receiving feedback from one or more evaluators, AlphaEvolve
iteratively improves the algorithm, potentially leading to new scientific and practical discoveries. We
demonstrate the broad applicability of this approach by applying it to a number of important com-
putational problems. When applied to optimizing critical components of large-scale computational
stacks at Google, AlphaEvolve developed a more efficient scheduling algorithm for data centers, found
a functionally equivalent simplification in the circuit design of hardware accelerators, and acceler-
ated the training of the LLM underpinning AlphaEvolve itself. Furthermore, AlphaEvolve discovered
novel, provably correct algorithms that surpass state-of-the-art solutions on a spectrum of problems
in mathematics and computer science, significantly expanding the scope of prior automated discovery
methods (Romera-Paredes et al., 2023). Notably, AlphaEvolve developed a search algorithm that found a
procedure to multiply two 4 x 4 complex-valued matrices using 48 scalar multiplications; offering the
first improvement, after 56 years, over Strassen’s algorithm in this setting. We believe AlphaEvolve and
coding agents like it can have a significant impact in improving solutions of problems across many areas
of science and computation.



Updates in this space

FunSearch has a successor, AlphaEvolve, DeepMind June 2025011,

FunSearch [83] AlphaEvolve

evolves single function evolves entire code file

evolves up to 10-20 lines of code evolves up to hundreds of lines of code

evolves code in Python evolves any language

needs fast evaluation (< 20min on 1 CPU)  can evaluate for hours, in parallel, on accelerators
millions of LLM samples used thousands of LLM samples suffice

small LLMs used; no benefit from larger benefits from SOTA LLMs

minimal context (only previous solutions) rich context and feedback in prompts

optimizes single metric can simultaneously optimize multiple metrics



Relations to the workshop thus far

Data-Driven
Methods
Designing approaches

that learn implicit

functions from data
(NNs, Transtormers, SR)

. So far in the course
. What we saw today + role in FunSearch and Algorithm Generation



Relations to the workshop thus far

Data-Driven
Methods
Designing approaches
that learn implicit

functions from data
(NNs, Transtormers, SR)

When we don’t have
data, these methods can
still work via self
improvement by generating
data and gradually training
on best examples

. So far in the course
. What we saw today + role in FunSearch and Algorithm Generation



Relations to the workshop thus far

Automated

Reasoning
Automated theorem

provers can help us build

tools to auto formalize
and verify knowledge.

. So far in the course
. What we saw today + role in FunSearch and Algorithm Generation



Relations to the workshop thus far

Automated
Reasoning
Automated theorem
provers can help us build
tools to auto formalize
and verify knowledge.

For classes of problems

where verification is easy
but solving is hard, we can
leverage fast inference at a
large scale to find solutions

. So far in the course
. What we saw today + role in FunSearch and Algorithm Generation



Relations to the workshop thus far

Data-Driven Automated Data + Reasoning
Methods Reasoning terated
Designing approaches Automated theorem We can take functional

that learn implicit provers can help us build forms learned on data and

functions from data tools to auto formalize test on theory to study
(NNs, Transtformers, SR) and verify knowledge. outputs. (Al Descartes)

When we don’t have

For classes of problems
data, these methods can I
where verification is easy

but solving is hard, we can
leverage fast inference at a

still work via self
improvement by generating
data and gradually training

large scale to find solutions
on best examples

. So far in the course
. What we saw today + role in FunSearch and Algorithm Generation



Relations to the workshop thus far

Data + Reasoning
lterated

We can take functional
forms learned on data and
test on theory to study
outputs. (Al Descartes)

An advantage of
generating algorithms over

traditional representation is

that we test generalization
through runs.

. So far in the course
. What we saw today + role in FunSearch and Algorithm Generation



Relations to the workshop thus far

Data-Driven Automated Data + Reasoning Data +

Methods Reasoning terated Reasoning Integrated
Designing approaches Automated theorem We can take functional Integrating both data

that learn implicit provers can help us build forms learned on data and and theory in the search

functions from data tools to auto formalize test on theory to study process can improve
(NNs, Transtformers, SR) and verify knowledge. outputs. (Al Descartes) search (Al Hilbert)

When we don't have
data th hod For classes of problems An advantage of
ata, these methods can - | |
i Cvia salf where verification is easy generating algorithms over
still work via se - -
| b - but solving is hard, we can traditional representation is
improvemen eneratin | -
1 FJ)[ d arad 4 ﬁ’ rrain J leverage fast inference at a that we test generalization
ata and gradually trainin | |
arge scale to find solutions rough runs.
I Y I large scale to find solut through
on best examples

. So far in the course
. What we saw today + role in FunSearch and Algorithm Generation



Relations to the workshop thus far

Data-Driven Automated Data + Reasoning Data +
Methods WerNelallale lterated Reasoning Integrated
Designing approaches Automated theorem We can take functional Integrating both data
that learn implicit provers can help us build forms learned on data and and theory in the search
functions from data tools to auto formalize test on theory to study process can improve
(NNs, Transtformers, SR) and verity knowledge. outputs. (Al Descartes) search (Al Hilbert)

When we don't have Prior information is used
For classes of problems An advantage of .
data, these methods can to build a skeleton of a

where verification is easy generating algorithms over
but solving is hard, we can traditional representation is
leverage fast inference at a that we test generalization

still work via selt program that we will use in

improvement by generating the neural search process.

data and gradually training Knowledge of the problem

large scale to find solutions through runs.
on best examples

Is essential to search.

. So far in the course
. What we saw today + role in FunSearch and Algorithm Generation



Relations to the workshop thus far

Automated

Reasoning
Automated theorem

Data-Driven
Methods
Designing approaches
that learn implicit

Data + Reasoning Data +

lterated Reasoning Integrated

We can take functional Integrating both data
provers can help us build forms learned on data and and theory in the search

functions from data tools to auto formalize

(NNs, Transtormers, SR)

test on theory to study process can improve

and verify knowledge. outputs. (Al Descartes) search (Al Hilbert)

When we don’t have Prior information is used

An advantage of

For classes of problems

data, these methods can to build a skeleton of a

, , where verification is easy generating algorithms over , ,
still work via selt L . L program that we will use in
, , but solving is hard, we can traditional representation is

improvement by generating the neural search process.

leverage fast inference at a that we test generalization

Knowledge of the problem

data and gradually training

through runs.
on best examples

large scale to find solutions . .
is essential to search.

. So far in the course
. What we saw today + role in FunSearch and Algorithm Generation



References

[1] Terry Tao Blog Post: Link here (Open question: best bounds for cap sets, Feb 2007)

[2] Ellenberg, Jordan S., and Lalit Jain. "Convergence rates for ordinal embedding." arXiv preprint
arXiv:1904.12994 (2019).

3] Spot, Boston Dynamics Robot: https://bostondynamics.com/blog/starting-on-the-right-foot-with-reinforcement-
earning/

4] Silver, David, Thomas Hubert, Julian Schrittwieser, loannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot et
al. "Mastering chess and shogi by self-play with a general reinforcement learning algorithm." arXiv preprint
arXiv:1712.01815 (2017).

[5] Wagner, Adam Zsolt. "Constructions in combinatorics via neural networks." arXiv preprint arXiv:2104.14516 (2021).

[6] Charton, Francois, Jordan S. Ellenberg, Adam Zsolt Wagner, and Geordie Williamson. "Patternboost:
Constructions in mathematics with a little help from ai." arXiv preprint arXiv:2411.00566 (2024).

/] Roziere, Baptiste, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi et al. "Code
lama: Open foundation models for code.” arXiv preprint arXiv:2308.12950 (2023).

8] Romera-Paredes, B., Barekatain, M., Novikov, A. et al. Mathematical discoveries from program search with large
anguage models. Nature 625, 468—475 (2024). https://doi.org/10.1038/s41586-023-06924-6

9] Matej Balog CMSA Talk - https://www.youtube.com/watch?v=VJ_meFdGwE8&t=753s

10] Ellenberg, Jordan S., Cristofero S. Fraser-Taliente, Thomas R. Harvey, Karan Srivastava, and Andrew V.
Sutherland. "Generative modellng for mathematical dlscovery " arXiv preprint arXiv:2503.11061 (2025).

[11] Novikov, Alexander, Ngan VU, Marvin Eisenberger, Emilien Dupont, Po-Sen Huang, Adam Zsolt Wagner, Sergey
Shirobokov et al. "AlphaEvolve: A coding agent for scientific and algorithmic discovery." arXiv preprint
arXiv:2506.13131 (2025).



https://terrytao.wordpress.com/2007/02/23/open-question-best-bounds-for-cap-sets/
https://bostondynamics.com/blog/starting-on-the-right-foot-with-reinforcement-learning/
https://bostondynamics.com/blog/starting-on-the-right-foot-with-reinforcement-learning/
https://doi.org/10.1038/s41586-023-06924-6

\\\\

\\\\\

\

\\\\\\\\\\\\\\
~\\

\\\\

BN
NN
\\\\\\\\

I
V V
W V



mailto:ksrivastava4@wisc.edu

