
Theorem 1. Given X,NY , and Y that satisfy an ANM with a function ϕ, if there is a backward mechanism
of the same form, then ϕ, PX , PNY

must satisfy the following differential equation:

ξ′′′ = ξ′′
(
−ν

′′′ϕ′

ν′′
+
ϕ′′

ϕ′

)
− 2ν′′ϕ′′ϕ′ + ν′ϕ′′′ +

ν′ν′′′ϕ′′ϕ′

ν′′
− ν′(ϕ′′)2

ϕ′

where ν := logPNY
and ξ := logPX , and we also have that ν′′(y − ϕ(x))ϕ′(x) ̸= 0 .

Also, we have that if these conditions hold, then if there is a y for which ν′′(y − ϕ(x))ϕ′(x) ̸= 0 is true for
every x aside from a countable set, then the set of all PX which admit a backward model is 3-dimensional (i.e.
can be contained in a 3-dimensional affine space).

Proof. Let π(X,Y ) := logP (X,Y ). Then we have that

π(x, y) = logP (x, y) = log(PNY
(y − ϕ(x)) · PX(x)) = log(PNY

(y − ϕ(x))) + log(PX(x))

= ν(y − ϕ(x)) + ξ(x) (1)

If there existed a backward model, then similar to our prior reasoning, it would have the form

P (x, y) = PNX
(x− ψ(y)) · PY (y)

for some function ψ. So, similar to above, we get

π(x, y) = ν̄(x− ψ(y)) + η(y) (2)

where ν̄ := logPNX
and η := logPY . Now, taking partial derivatives of (2), we get that

∂π

∂y
= −ψ′(y)ν̄′(x− ψ(y)) + η′(y) =⇒ ∂2π

∂x∂y
= −ψ′(y)ν̄′′(x− ψ(y))

Similarly,

∂2π

∂x2
= ν̄′′(x− ψ(y)).

Notice that since

∂2π
∂x2

∂2π
∂x∂y

=
ν̄′′(x− ψ(y))

−ψ′(y)ν̄′′(x− ψ(y))
=

1

−ψ′(y)

we have that

∂

∂x

(
∂2π
∂x2

∂2π
∂x∂y

)
= 0 (3)

Now similarly to the above results, taking the same partial derivatives of (1), we get

∂2π

∂x∂y
=

∂

∂x

(
∂

∂y
[ν(y − ϕ(x)) + ξ(x)]

)
=

∂

∂x
[ν′(y − ϕ(x))]

= −ϕ′(x)ν′′(y − ϕ(x))

and

∂2π

∂x2
=

∂

∂x
(−ν′(y − ϕ(x)ϕ′(x) + ξ′(x)) = ϕ′(x)ν′′(y − ϕ(x)ϕ′(x)− ν′(y − ϕ(x))ϕ′′(x) + ξ′′(x)
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This gives us that

∂2π
∂x2

∂2π
∂x∂y

=
ϕ′2(x)ν′′(y − ϕ(x))− ν′(y − ϕ(x))ϕ′′(x) + ξ′′(x)

−ϕ′(x)ν′′(y − ϕ(x))

In the following work, we’ll leave out the inputs of ν, ξ, ν̄, η and their derivatives for the sake of readability.
Taking the partial derivative of this with respect to x, we get

∂

∂x

(
∂2π
∂x2

∂2π
∂x∂y

)
=

∂

∂x

(
ϕ′2ν′′ − ν′ϕ′′ + ξ′′

−ϕ′ν′′

)

=
∂

∂x

(
−ϕ′ + ϕ′′ν′

ϕ′ν′′
− ξ′

ϕ′ν′′

)
= −ϕ′′ + [ϕ′′′ν′ − ϕ′′ϕ′ν′′](ϕ′ν′′)− [ϕ′′ν′′ − ϕ′2ν′′′](ϕ′′ν′)

(ϕ′)2(ν′′)2
− ξ′′′[ϕ′ν′′]− ξ′′[ϕ′′ν′′ − ϕ′2ν′′′

(ϕ′)2(ν′′)2

= −ϕ′′ + ϕ′′′ν′

ϕ′ν′′
− ϕ′′ − (ϕ′′)2ν′

(ϕ′)2ν′′
+
ν′′′ϕ′′ν′

(ν′′)2
− ξ′′′

ϕ′ν′′
+

ξ′′ϕ′′

(ϕ′)2ν′′
− ξ′′ν′′′

(ν′′)2
(4)

By (3), we know that the expression obtained in (4) is equal to 0. Thus, equating (4) to 0 and reordering
terms, we get the differential equation obtained in the theorem.

Now, we will prove the second statement in the theorem. To do this, notice that our differential equation

ξ′′′ = ξ′′
(
−ν

′′′ϕ′

ν′′
+
ϕ′′

ϕ′

)
− 2ν′′ϕ′′ϕ′ + ν′ϕ′′′ +

ν′ν′′′ϕ′′ϕ′

ν′′
− ν′(ϕ′′)2

ϕ′

has the form of a linear equation

z′(x) = z(x)G(x, y) +H(x, y) (5)

where

G(x, y) =
ν′′′ϕ′

ν′′
+
ϕ′′

ϕ′
and H(x, y) = −2ν′′ϕ′′ϕ′ + ν′ϕ′′′ +

ν′ν′′′ϕ′′ϕ′

ν′′
− ν(ϕ′′)2

ϕ′

To solve linear ODEs, first, let us assume an initial condition z0 = z(x0). Then we use the theory of integrating
factors from elementary differential equations to get that the integrating factor is

I.F = e
∫ x
x0

G(x̂,y)dx̂

This, along with the initial condition z0, gives us that

z(x) = z0e
∫ x
x0

G(x̂,y)dx̂
+

∫ x

x0

e
∫ x
x0

G(x̂,y)dx̂
H(x̂, y)dx̂

Fix y such that ν′′(y − ϕ(x))ϕ′(x) ̸= 0 for all but countably many x. We know the general solution to (5),
without any initial conditions, is

z(x) =
1

I.F
[∫

I.F(x̂)H(x)dx̂+ C
]

So, clearly we have that given a linear 1st order ODE, z is determined by z0. So, in our case,

ξ′′ = z =⇒ ξ′′(x0) = z0

Thus fixing ξ0 = ξ′′(x0) determines ξ′′. Let F be a second antiderivative of z (that is, F ′′ = z). Then we
have that
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ξ′′ = F ′′ =⇒ ξ′ = F ′ + c1

Thus for ξ′0 = ξ′(x0), we have c1 = ξ′0 − F ′′(x0) and so fixing ξ′0 determines ξ′. Following this, we have that

ξ(x) = F (x) + c1(x) + c2

and similarly fixing ξ0 = ξ(0) determines c2 and therefore ξ. Thus, we get that ξ is uniquely determined by
ξ(x0), ξ

′(x0), ξ
′′(x0) and so the solution space is of dimension 3.
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