Theorem 1. Given X, N_{Y}, and Y that satisfy an ANM with a function ϕ, if there is a backward mechanism of the same form, then $\phi, P_{X}, P_{N_{Y}}$ must satisfy the following differential equation:

$$
\xi^{\prime \prime \prime}=\xi^{\prime \prime}\left(-\frac{\nu^{\prime \prime \prime} \phi^{\prime}}{\nu^{\prime \prime}}+\frac{\phi^{\prime \prime}}{\phi^{\prime}}\right)-2 \nu^{\prime \prime} \phi^{\prime \prime} \phi^{\prime}+\nu^{\prime} \phi^{\prime \prime \prime}+\frac{\nu^{\prime} \nu^{\prime \prime \prime} \phi^{\prime \prime} \phi^{\prime}}{\nu^{\prime \prime}}-\frac{\nu^{\prime}\left(\phi^{\prime \prime}\right)^{2}}{\phi^{\prime}}
$$

where $\nu:=\log P_{N_{Y}}$ and $\xi:=\log P_{X}$, and we also have that $\nu^{\prime \prime}(y-\phi(x)) \phi^{\prime}(x) \neq 0$.
Also, we have that if these conditions hold, then if there is a y for which $\nu^{\prime \prime}(y-\phi(x)) \phi^{\prime}(x) \neq 0$ is true for every x aside from a countable set, then the set of all P_{X} which admit a backward model is 3-dimensional (i.e. can be contained in a 3-dimensional affine space).
Proof. Let $\pi(X, Y):=\log P(X, Y)$. Then we have that

$$
\begin{gather*}
\pi(x, y)=\log P(x, y)=\log \left(P_{N_{Y}}(y-\phi(x)) \cdot P_{X}(x)\right)=\log \left(P_{N_{Y}}(y-\phi(x))\right)+\log \left(P_{X}(x)\right) \\
=\nu(y-\phi(x))+\xi(x) \tag{1}
\end{gather*}
$$

If there existed a backward model, then similar to our prior reasoning, it would have the form

$$
P(x, y)=P_{N_{X}}(x-\psi(y)) \cdot P_{Y}(y)
$$

for some function ψ. So, similar to above, we get

$$
\begin{equation*}
\pi(x, y)=\bar{\nu}(x-\psi(y))+\eta(y) \tag{2}
\end{equation*}
$$

where $\bar{\nu}:=\log P_{N_{X}}$ and $\eta:=\log P_{Y}$. Now, taking partial derivatives of (2), we get that

$$
\frac{\partial \pi}{\partial y}=-\psi^{\prime}(y) \bar{\nu}^{\prime}(x-\psi(y))+\eta^{\prime}(y) \Longrightarrow \frac{\partial^{2} \pi}{\partial x \partial y}=-\psi^{\prime}(y) \bar{\nu}^{\prime \prime}(x-\psi(y))
$$

Similarly,

$$
\frac{\partial^{2} \pi}{\partial x^{2}}=\bar{\nu}^{\prime \prime}(x-\psi(y))
$$

Notice that since

$$
\frac{\frac{\partial^{2} \pi}{\partial x^{2}}}{\frac{\partial^{2} \pi}{\partial x \partial y}}=\frac{\bar{\nu}^{\prime \prime}(x-\psi(y))}{-\psi^{\prime}(y) \bar{\nu}^{\prime \prime}(x-\psi(y))}=\frac{1}{-\psi^{\prime}(y)}
$$

we have that

$$
\begin{equation*}
\frac{\partial}{\partial x}\left(\frac{\frac{\partial^{2} \pi}{\partial x^{2}}}{\frac{\partial^{2} \pi}{\partial x \partial y}}\right)=0 \tag{3}
\end{equation*}
$$

Now similarly to the above results, taking the same partial derivatives of (1), we get

$$
\begin{gathered}
\frac{\partial^{2} \pi}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial}{\partial y}[\nu(y-\phi(x))+\xi(x)]\right)=\frac{\partial}{\partial x}\left[\nu^{\prime}(y-\phi(x))\right] \\
=-\phi^{\prime}(x) \nu^{\prime \prime}(y-\phi(x))
\end{gathered}
$$

and

$$
\frac{\partial^{2} \pi}{\partial x^{2}}=\frac{\partial}{\partial x}\left(-\nu^{\prime}\left(y-\phi(x) \phi^{\prime}(x)+\xi^{\prime}(x)\right)=\phi^{\prime}(x) \nu^{\prime \prime}\left(y-\phi(x) \phi^{\prime}(x)-\nu^{\prime}(y-\phi(x)) \phi^{\prime \prime}(x)+\xi^{\prime \prime}(x)\right.\right.
$$

This gives us that

$$
\frac{\frac{\partial^{2} \pi}{\partial x^{2}}}{\frac{\partial^{2} \pi}{\partial x \partial y}}=\frac{\phi^{\prime 2}(x) \nu^{\prime \prime}(y-\phi(x))-\nu^{\prime}(y-\phi(x)) \phi^{\prime \prime}(x)+\xi^{\prime \prime}(x)}{-\phi^{\prime}(x) \nu^{\prime \prime}(y-\phi(x))}
$$

In the following work, we'll leave out the inputs of $\nu, \xi, \bar{\nu}, \eta$ and their derivatives for the sake of readability. Taking the partial derivative of this with respect to x, we get

$$
\begin{gather*}
\frac{\partial}{\partial x}\left(\frac{\frac{\partial^{2} \pi}{\partial x^{2}}}{\frac{\partial^{2} \pi}{\partial x \partial y}}\right)=\frac{\partial}{\partial x}\left(\frac{\phi^{2} \nu^{\prime \prime}-\nu^{\prime} \phi^{\prime \prime}+\xi^{\prime \prime}}{-\phi^{\prime} \nu^{\prime \prime}}\right) \\
=\frac{\partial}{\partial x}\left(-\phi^{\prime}+\frac{\phi^{\prime \prime} \nu^{\prime}}{\phi^{\prime} \nu^{\prime \prime}}-\frac{\xi^{\prime}}{\phi^{\prime} \nu^{\prime \prime}}\right)=-\phi^{\prime \prime}+\frac{\left[\phi^{\prime \prime \prime} \nu^{\prime}-\phi^{\prime \prime} \phi^{\prime} \nu^{\prime \prime}\right]\left(\phi^{\prime} \nu^{\prime \prime}\right)-\left[\phi^{\prime \prime} \nu^{\prime \prime}-\phi^{\prime 2} \nu^{\prime \prime \prime}\right]\left(\phi^{\prime \prime} \nu^{\prime}\right)}{\left(\phi^{\prime}\right)^{2}\left(\nu^{\prime \prime}\right)^{2}}-\frac{\xi^{\prime \prime \prime}\left[\phi^{\prime} \nu^{\prime \prime}\right]-\xi^{\prime \prime}\left[\phi^{\prime \prime} \nu^{\prime \prime}-\phi^{\prime 2} \nu^{\prime \prime \prime}\right.}{\left(\phi^{\prime}\right)^{2}\left(\nu^{\prime \prime}\right)^{2}} \\
=-\phi^{\prime \prime}+\frac{\phi^{\prime \prime \prime} \nu^{\prime}}{\phi^{\prime} \nu^{\prime \prime}}-\phi^{\prime \prime}-\frac{\left(\phi^{\prime \prime}\right)^{2} \nu^{\prime}}{\left(\phi^{\prime}\right)^{2} \nu^{\prime \prime}}+\frac{\nu^{\prime \prime \prime} \phi^{\prime \prime} \nu^{\prime}}{\left(\nu^{\prime \prime}\right)^{2}}-\frac{\xi^{\prime \prime \prime}}{\phi^{\prime} \nu^{\prime \prime}}+\frac{\xi^{\prime \prime} \phi^{\prime \prime}}{\left(\phi^{\prime}\right)^{2} \nu^{\prime \prime}}-\frac{\xi^{\prime \prime} \nu^{\prime \prime \prime}}{\left(\nu^{\prime \prime}\right)^{2}} \tag{4}
\end{gather*}
$$

By (3), we know that the expression obtained in (4) is equal to 0 . Thus, equating (4) to 0 and reordering terms, we get the differential equation obtained in the theorem.

Now, we will prove the second statement in the theorem. To do this, notice that our differential equation

$$
\xi^{\prime \prime \prime}=\xi^{\prime \prime}\left(-\frac{\nu^{\prime \prime \prime} \phi^{\prime}}{\nu^{\prime \prime}}+\frac{\phi^{\prime \prime}}{\phi^{\prime}}\right)-2 \nu^{\prime \prime} \phi^{\prime \prime} \phi^{\prime}+\nu^{\prime} \phi^{\prime \prime \prime}+\frac{\nu^{\prime} \nu^{\prime \prime \prime} \phi^{\prime \prime} \phi^{\prime}}{\nu^{\prime \prime}}-\frac{\nu^{\prime}\left(\phi^{\prime \prime}\right)^{2}}{\phi^{\prime}}
$$

has the form of a linear equation

$$
\begin{equation*}
z^{\prime}(x)=z(x) G(x, y)+H(x, y) \tag{5}
\end{equation*}
$$

where

$$
G(x, y)=\frac{\nu^{\prime \prime \prime} \phi^{\prime}}{\nu^{\prime \prime}}+\frac{\phi^{\prime \prime}}{\phi^{\prime}} \text { and } H(x, y)=-2 \nu^{\prime \prime} \phi^{\prime \prime} \phi^{\prime}+\nu^{\prime} \phi^{\prime \prime \prime}+\frac{\nu^{\prime} \nu^{\prime \prime \prime} \phi^{\prime \prime} \phi^{\prime}}{\nu^{\prime \prime}}-\frac{\nu\left(\phi^{\prime \prime}\right)^{2}}{\phi^{\prime}}
$$

To solve linear ODEs, first, let us assume an initial condition $z_{0}=z\left(x_{0}\right)$. Then we use the theory of integrating factors from elementary differential equations to get that the integrating factor is

$$
\text { I. } \mathrm{F}=e^{\int_{x_{0}}^{x} G(\hat{x}, y) d \hat{x}}
$$

This, along with the initial condition z_{0}, gives us that

$$
z(x)=z_{0} e^{\int_{x_{0}}^{x} G(\hat{x}, y) d \hat{x}}+\int_{x_{0}}^{x} e^{\int_{x_{0}}^{x} G(\hat{x}, y) d \hat{x}} H(\hat{x}, y) d \hat{x}
$$

Fix y such that $\nu^{\prime \prime}(y-\phi(x)) \phi^{\prime}(x) \neq 0$ for all but countably many x. We know the general solution to (5), without any initial conditions, is

$$
z(x)=\frac{1}{\mathrm{I} . \mathrm{F}\left[\int \mathrm{I} . \mathrm{F}(\hat{x}) H(x) d \hat{x}+C\right]}
$$

So, clearly we have that given a linear 1 st order ODE, z is determined by z_{0}. So, in our case,

$$
\xi^{\prime \prime}=z \Longrightarrow \xi^{\prime \prime}\left(x_{0}\right)=z_{0}
$$

Thus fixing $\xi_{0}=\xi^{\prime \prime}\left(x_{0}\right)$ determines $\xi^{\prime \prime}$. Let F be a second antiderivative of $z\left(\right.$ that is, $\left.F^{\prime \prime}=z\right)$. Then we have that

$$
\xi^{\prime \prime}=F^{\prime \prime} \Longrightarrow \xi^{\prime}=F^{\prime}+c_{1}
$$

Thus for $\xi_{0}^{\prime}=\xi^{\prime}\left(x_{0}\right)$, we have $c_{1}=\xi_{0}^{\prime}-F^{\prime \prime}\left(x_{0}\right)$ and so fixing ξ_{0}^{\prime} determines ξ^{\prime}. Following this, we have that

$$
\xi(x)=F(x)+c_{1}(x)+c_{2}
$$

and similarly fixing $\xi_{0}=\xi(0)$ determines c_{2} and therefore ξ. Thus, we get that ξ is uniquely determined by $\xi\left(x_{0}\right), \xi^{\prime}\left(x_{0}\right), \xi^{\prime \prime}\left(x_{0}\right)$ and so the solution space is of dimension 3.

