Theorem 1. Given X, Ny, and Y that satisfy an ANM with a function ¢, if there is a backward mechanism
of the same form, then ¢, Px, Pn, must satisfy the following differential equation:
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where v := log Py, and & :=log Px, and we also have that v" (y — ¢(x))¢’'(x) #0 .
Also, we have that if these conditions hold, then if there is a y for which V" (y — ¢(x))¢'(x) # 0 is true for
every x aside from a countable set, then the set of all Px which admit a backward model is 3-dimensional (i.e.
can be contained in a 3-dimensional affine space).

Proof. Let n(X,Y) :=1log P(X,Y). Then we have that

m(2,y) = log P(z,y) = log(Pny (y — ¢()) - Px(2)) = log(Pny (y — ¢())) + log(Px (z))

= v(y — é(@)) + &(x) (1)

If there existed a backward model, then similar to our prior reasoning, it would have the form

P(z,y) = Pry (z = 9(y)) - Pr(y)

for some function 1. So, similar to above, we get

m(z,y) = v(r —P(y)) +n(y) (2)

where 7 :=log Py, and 7 := log Py. Now, taking partial derivatives of (2), we get that
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we have that
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Now similarly to the above results, taking the same partial derivatives of (1), we get
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This gives us that
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In the following work, we’ll leave out the inputs of v, £, 7, n and their derivatives for the sake of readability.
Taking the partial derivative of this with respect to z, we get
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By (3), we know that the expression obtained in (4) is equal to 0. Thus, equating (4) to 0 and reordering
terms, we get the differential equation obtained in the theorem.
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Now, we will prove the second statement in the theorem. To do this, notice that our differential equation
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has the form of a linear equation

where
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To solve linear ODEs, first, let us assume an initial condition zy = z(x¢). Then we use the theory of integrating
factors from elementary differential equations to get that the integrating factor is

G(x,y) =
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This, along with the initial condition zg, gives us that
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Fix y such that v"(y — ¢(x))¢’(x) # 0 for all but countably many x. We know the general solution to (5),
without any initial conditions, is
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So, clearly we have that given a linear 1st order ODE, z is determined by zy. So, in our case,
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Thus fixing &y = £ (o) determines £”. Let F be a second antiderivative of z (that is, F/ = z). Then we
have that
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Thus for &) = &' (x0), we have ¢; = &) — F"(x0) and so fixing & determines ¢’. Following this, we have that

£(x) = F(z) + e1(x) + 2

and similarly fixing &y = £(0) determines co and therefore £. Thus, we get that £ is uniquely determined by
&(z0),& (x0),&"(x0) and so the solution space is of dimension 3.
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