Corollary 1. If " =" =0, then the only models that admit backward models are when ¢ is linear.
Proof. By the proof of the main theorem, we have that
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which, when substituting the equations for each term obtained in the proof of the theorem, gives us that
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By assumption, since £ = v = 0, we know that v = C for every y — ¢(x). Furthermore, since v = log Py,
we cannot have C' = 0 by chain rule. Putting this together with (1), we get
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Since C' # 0, we know that v/ is linear and with nonzero slope, thus there must exist an a such that /(o =0
Thus, restricting to the set on which v/ = 0, we get

¢ (20(¢')* = €") =0

Assume, for the sake of contradiction, that there is an z for which ¢”(z) # 0. Then we have (¢/(x))?

= %
Since we know that £ = 0, similar to v, we get that £ = D # 0. So then (¢/(2))* = & = ¢/(z) = \/%
and thus ¢’ is a constant function. This is true for every z on which ¢ (z) # 0. But the set S = {z : ¢"(x) # 0}
is an open set. This we have an open set S on which ¢’(z) is a constant function Vz € S. Thus, on the open
set S, we have ¢'(x) = OVax € S. This contradicts the definition of S. Thus there is no such z and ¢"(z) =0
Vx and so ¢ is linear.
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