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Subspace Reconstruction
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Problem Description

Goal: To estimate the line (or linear shape)
from the noisy pieces and bound the error?




Motivation

Our main tool for modelling data is linear algebra

EENNN
EENENN

Since data is often best modelled by subspaces



Motivation

Our main tool for modelling data is linear algebra
_ &

3 v
.....

Since data is often best modelled by subspaces
But data is often noisy



Motivation

Our main tool for modelling data is linear algebra

_ %
AEam e e
Sl o,
sEeseE — o
Tt O
SEEE® ¥l

aEe o
ac
3 T

gE ©
 mEEs

Since data is often best modelled by subspaces
But data is often noisy and missing
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Previous Work - Noiseless Case

fQuestion: Which projections do
we need to observe for
a unique reconstruction?j

"

D. L. Pimentel-Alarcén, N. Boston, and R. D. Nowak, “Deterministic
conditions for subspace identifiability from incomplete sampling,” in
Information Theory (ISIT), 2015 IEEE International Symposium on.
IEEE, 2015, pp. 2191-2195.



Our Work - Noisy Case

Theorem (S., P-A))
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The cool bound we found




Applications - LRMC Theory

Noiseless Theory

©® Deterministic sampling conditions for unique completabil-
ity in LRMC (Theorem 2, Lemma 8 in [2]).

® The information-theoretic requirements and sample com-
plexity of HRMC (Theorems 1, 2 in [3]).

® The fundamental conditions for learning mixtures in MMC
(Theorem 1 in [4]).

@ Identifiability conditions to learn tensorized subspaces in
LADMC (Theorem 1 in [5], Lemmas 2, 3 in [6]).

/ ® Unique completability conditions for LTRTC (Lemma 4,

Theorem 4 in [7], Lemma 9, Theorem 7 in [8]).
@ Deterministic conditions for unique completability in
LCRTC (Lemma 18 in [9]).
Project incomplete
data onto candidate

subspaces; reject

incompatible More generally

With our generalisations :
R ﬁ Hpefellieslells EaseE




Applications - RPCA

Subspace Reconstruction RPCA-ALM
Based Background Segmentation (Lin et.al 2011-206)

Original Frame

D. Pimentel-Alarcon and R. Nowak, “Random consensus robust pca,”
Electronic Journal of Statistics, vol. 11, no. 2, pp. 5232-5253, 2017.




Future Directions

e Line -> Curved Shapes - Can we do thisin a
computationally feasible way?

e How to find these projections - Can we find an algorithm
to find projections given sparse data?

e Can we generalize these bounds to cases where we have
multiple subspaces?
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