

Daniel Pimentel-Alarcón
Not the person you're looking at

Problem Description

Problem Description

Problem Description

Problem Description

Goal: To estimate the line (or linear shape) from the noisy pieces and bound the error?

Motivation

Our main tool for modelling data is linear algebra

Since data is often best modelled by subspaces

Motivation

Our main tool for modelling data is linear algebra

Since data is often best modelled by subspaces But data is often noisy

Motivation

Our main tool for modelling data is linear algebra

Since data is often best modelled by subspaces

Motivation

The problem of completing matrices is Matrix Completion

Motivation

The problem of completing matrices is Matrix Completion

Motivation

Subspace

Reconstruction

Matrix
Completion

Previous Work - Noiseless Case

Question: Which projections do we need to observe for a unique reconstruction?
D. L. Pimentel-Alarcón, N. Boston, and R. D. Nowak, "Deterministic conditions for subspace identifiability from incomplete sampling," in Information Theory (ISIT), 2015 IEEE International Symposium on. IEEE, 2015, pp. 2191-2195.

Our Work - Noisy Case

Applications - LRMC Theory

Applications - RPCA

Original Frame

Subspace Reconstruction Based Background Segmentation

RPCA-ALM
(Lin et.al 2011-206)

D. Pimentel-Alarcón and R. Nowak, "Random consensus robust pca," Electronic Journal of Statistics, vol. 11, no. 2, pp. 5232-5253, 2017.

Future Directions

- Line -> Curved Shapes - Can we do this in a computationally feasible way?
- How to find these projections - Can we find an algorithm to find projections given sparse data?
- Can we generalize these bounds to cases where we have multiple subspaces?

THANKS A BUNCH!

Karan Srivastava ksrivastava4@wisc.edu

