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Abstract

The practice of mathematics involves discovering patterns and using these to formulate and
prove conjectures, resulting in theorems. Since the 1960s, mathematicians have used
computers to assist in the discovery of patterns and formulation of conjectures!, most
famously in the Birch and Swinnerton-Dyer conjecture2, a Millennium Prize Problem?. Here
we provide examples of new fundamental results in pure mathematics that have been
discovered with the assistance of machine learning—demonstrating a method by which
machine learning can aid mathematicians in discovering new conjectures and theorems. We
propose a process of using machine learning to discover potential patterns and relations
between mathematical objects, understanding them with attribution techniques and using

these observations to guide intuition and propose conjectures. We outline this machine-
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Abstract

Scientists aim to discover meaningful formulae that accurately describe experimental data.
Mathematical models of natural phenomena can be manually created from domain
knowledge and fitted to data, or, in contrast, created automatically from large datasets with
machine-learning algorithms. The problem of incorporating prior knowledge expressed as
constraints on the functional form of a learned model has been studied before, while finding
models that are consistent with prior knowledge expressed via general logical axioms is an
open problem. We develop a method to enable principled derivations of models of natural
phenomena from axiomatic knowledge and experimental data by combining logical
reasoning with symbolic regression. We demonstrate these concepts for Kepler’s third law of
planetary motion, Einstein’s relativistic time-dilation law, and Langmuir’s theory of

adsorption. We show we can discover governing laws from few data points when logical

reasoning is used to distinguish between candidate formulae having similar error on the data.
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Abstract

Improving the efficiency of algorithms for fundamental computations can have a widespread
impact, as it can affect the overall speed of a large amount of computations. Matrix
multiplication is one such primitive task, occurring in many systems—from neural networks
to scientific computing routines. The automatic discovery of algorithms using machine
learning offers the prospect of reaching beyond human intuition and outperforming the
current best human-designed algorithms. However, automating the algorithm discovery
procedure is intricate, as the space of possible algorithms is enormous. Here we report a deep
reinforcement learning approach based on AlphaZero! for discovering efficient and provably
correct algorithms for the multiplication of arbitrary matrices. Our agent, AlphaTensor, is
trained to play a single-player game where the objective is finding tensor decompositions
within a finite factor space. AlphaTensor discovered algorithms that outperform the state-of-
the-art complexity for many matrix sizes. Particularly relevant is the case of 4 x 4 matricesina

finite field, where AlphaTensor’s algorithm improves on Strassen’s two-level algorithm for the
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The practice of mathematics involves discovering patterns and using these to formulate and
prove conjectures, resulting in theorems. Since the 1960s, mathematicians have used
computers to assist in the discovery of patterns and formulation of conjectures!, most
famously in the Birch and Swinnerton-Dyer conjecture?, a Millennium Prize Problem?. Here
we provide examples of new fundamental results in pure mathematics that have been
discovered with the assistance of machine learning—demonstrating a method by which
machine learning can aid mathematicians in discovering new conjectures and theorems. We
propose a process of using machine learning to discover potential patterns and relations
between mathematical objects, understanding them with attribution techniques and using

these observations to guide intuition and propose conjectures. We outline this machine-
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Key Idea










P(f(X(z) = Y(z)) > Random Chance
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Given an n x n finite integer
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largest subset such that no
three points form an
isosceles triangle?
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Things to keep in mind

Possible Problems

1. Reinforcement Learning requires very large amounts of data

2. Reinforcement Learning is slow

Some perspectives on solutions

1. Math data is synthetic, so we can synthesise a lot!

2. My university has lots of Nvidia GPUs! (But yes, we do need to engineer caretully).
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Abstract

Scientists aim to discover meaningful formulae that accurately describe experimental data.
Mathematical models of natural phenomena can be manually created from domain
knowledge and fitted to data, or, in contrast, created automatically from large datasets with
machine-learning algorithms. The problem of incorporating prior knowledge expressed as
constraints on the functional form of a learned model has been studied before, while finding
models that are consistent with prior knowledge expressed via general logical axioms is an
open problem. We develop a method to enable principled derivations of models of natural
phenomena from axiomatic knowledge and experimental data by combining logical
reasoning with symbolic regression. We demonstrate these concepts for Kepler’s third law of
planetary motion, Einstein’s relativistic time-dilation law, and Langmuir’s theory of
adsorption. We show we can discover governing laws from few data points when logical
reasoning is used to distinguish between candidate formulae having similar error on the data.
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Constructions in combinatorics via neural networks

Abstract

We demonstrate how by using a reinforcement learning algorithm, the deep cross-entropy method,
one can find explicit constructions and counterexamples to several open conjectures in extremal
combinatorics and graph theory. Amongst the conjectures we refute are a question of Brualdi and

Cao about maximizing permanents of pattern avoiding matrices, and several problems related to the
adjacency and distance eigenvalues of graphs.
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. What is Lean?

Lean is a functional programming language and interactive theorem prover.
Our project strives to revolutionize mathematics by empowering anyone with
an interest to grow in the field using Lean as their assistant. Lean was
o developed by Microsoft Research in 2013 as an initial effort to help
° mathematicians and engineers solve complex math problems. Lean is an
° open-source development environment for formal mathematics, also known
° as machine-checkable mathematics, used by and contributed to by an active
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The digital revolution has been driven by mathematical innovation. The
complexity of mathematical problems is increasing massively. Yet today’s
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K Tell me a joke about matrix decomposition

@ Why did the matrix refuse to go on vacation?

It didn't want to decompose under all that pressure! ®
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