Reinforcement Learning for Generating manan Useful Combinatorial Data

Karan Srivastava | Department of Mathematics at the University of Wisconsin-Madison

Research supported in part by NSF Award DMS-2023239

Under supervision of Jordan Ellenberg | University of Wisconsin-Madison
Collaboration with Adam Z. Wagner | Tel Aviv University

Some Vocabulary

Machine Learning:

- Computational process of (gradually) learning a task from given information

Some Vocabulary

Machine Learning:

- Computational process of (gradually) learning a task from given information

Some Vocabulary

Machine Learning:

- Computational process of (gradually) learning a task from given information

Some Vocabulary

Machine Learning:

- Computational process of (gradually) learning a task from given information

Some Vocabulary

Machine Learning:

- Computational process of (gradually) learning a task from given information

Some Vocabulary

Machine Learning:

- Computational process of (gradually) learning a task from given information

Some Vocabulary

Machine Learning

Supervised Learning

Some Vocabulary

Supervised Learning: Learning with Sampled Data

Some Vocabulary

Supervised Learning: Learning with Sampled Data

Some Vocabulary

Supervised Learning: Learning with Sampled Data

Known Labeled Data
(\mathcal{X}, Y)

Some Vocabulary

Supervised Learning: Learning with Sampled Data

Known Labeled Data
(X, Y)

Some Vocabulary

Supervised Learning: Learning with Sampled Data

Known Labeled Data
(\mathcal{X}, Y)
Unseen Data
$\hat{f}(\mathcal{X}) \approx Y$

Some Vocabulary

Reinforcement Learning: Learning without Sampled Data

Some Vocabulary

Reinforcement Learning: Learning without Sampled Data

Some Vocabulary

Reinforcement Learning: Learning without Sampled Data

Some Vocabulary

Neural Networks:

Inspiration

nature

Explore content \vee About the journal \sim Publish with us \vee

nature > articles > article

Article | Open Access | Published: 01 December 202

Advancing mathematics by guiding human intuition

 with AIAlex Davies \boxminus, Petar Veličković, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad Tomašev, Richard anburn, Peter Battaglia, Charles Blundell, András Juhász, Marc Lackenby, Geordie Williamson, Demis Hassabis \& Pushmeet Kohli \boxtimes

Nature 600, 70-74 (2021) Clite this article
247k Accesses | $\mathbf{9 2}$ Citations | $\mathbf{1 6 0 9}$ Altmetric \mid Metrics

Abstract

The practice of mathematics involves discovering patterns and using these to formulate and prove conjectures, resulting in theorems. Since the 1960 s , mathematicians have used omputers to assist in the discovery of patterns and formulation of conjectures ${ }^{1}$, most famously in the Birch and Swinnerton-Dyer conjecture ${ }^{2}$, a Millennium Prize Problem³ ${ }^{3}$. Here we provide examples of new fundamental results in pure mathematics that have been discovered with the assistance of machine learning-demonstrating a method by which machine learning can aid mathematicians in discovering new conjectures and theorems. We ropose a process of using machine learning to discover potential patterns and relations between mathematical objects, understanding them with attribution techniques and using these observations to guide intuition and propose conjectures. We outline this machine

nature communications

Explore content \sim About the journal \checkmark Publish with $u s$ ~
nature > nature commurications > articles > article
Article | Open Access | Published: 12 April 2023
Combining data and theory for derivable scientific discovery with AI-Descartes
Cristina Cornelio \boxminus, Sanieeb Dash, Vernon Austel, Tyler R. Josephson, Joao Goncalves, Kenneth L Clarkson, Nimrod Megiddo, Bachir El Khadir \& Lior Horesh

Nature Communications 14, Article number: 1777 (2023) | Cite this article
19k Accesses | 401 Altmetric \mid Metrics

Abstract

Scientists aim to discover meaningful formulae that accurately describe experimental data Mathematical models of natural phenomena can be manually created from domain knowledge and fitted to data, or in contrast, created automatically from large datasets with mache-learning lisoith The prober constraints on the functional form of a learned model has been studied before, while finding models that are consistent with prior knowledge expressed viag general logical axioms is an pen problem We develop method to enable principled derivations of models of natura phenomena from axiomatic knowledge and experimental data by combining logica reasoning with symbolic regression. We demonstrate these concepts for Kepler's third law of planetary motion, Einstein's relativistic time-dilation law, and Langmuir's theory of adsorption. We show we can discover governing laws from few data points when logical reasoning is used to distinguish between candidate formulae having similar error on the data.

nature

Explore content \backsim About the journal \vee Pubish with us

nature > articles > article

Aticle | Open Access | Published: 05 October 2022
Discovering faster matrix multiplication algorithms with reinforcement learning
Alhussein Fawzi \boxminus, Matej Balog, Aia Huang, Thomas Hubert, Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Francisco J. R. Ruiz, Julian Schritwieser, Grzegorz Swirszcz, David Silver, Demis Hassabis \& Pushmeet Kohli
Nature 610, 47-53 (2022) | cite this article
521k Accesses | 45 Citations | 3708 Altmetric | Metrics

Abstract

Improving the efficiency of algorithms for fundamental computations can have a widespread impact, as it can affect the overall speed of a large amount of computations. Matrix multiplication is one such primitive task, occurring in many systems-from neural networks toscientific computing routines. The automatic discovery of algorithms using machin learning offers the prospect of reaching beyond human intuition and outperforming the current best human-designed algorithms. However, automating the algorithm discovery procedure is intricate, as the space of possible algorithms is enormous. Here we report a dee reinforcement learning approach based on AlphaZerol for discovering efficient and provably ect algorithms for the multiplication of arbitrary matrices. Our agent, AlphaTenso is rained to play a single-player game where the objective is finding tensor decompositions within a finite factor space. AlphaTensor discovered algorithms that outperform the state-of he-art complexity for many matrix sizes. Particularly relevant is the case of 4×4 matrices in finite field, where AlphaTensor's algorithm improves on Strassen's two-level algorithm for the

Inspiration

nature

Explore content \checkmark About the journal $\checkmark \quad$ Publish with us \checkmark
nature > articles > article

Article \mid Open Access | Published: 01 December 202

Advancing mathematics by guiding human intuition with AI

Alex Davies $\boxminus, ~$ Petar Veličković, Lars Buesing, Sam Blackwell, Daniel Zheng, Nenad Tomašev, Richard Tanburn, Peter Battaglia, Charles Blundell, András Juhász, Marc Lackenby, Geordie Williamson, Demis Hassabis \& Pushmeet Kohli \boxtimes

Nature 600, 70-74 (2021) | Cite this article
247k Accesses | $\mathbf{9 2}$ Citations $\mid \mathbf{1 6 0 9}$ Altmetric | Metrics

Abstract

The practice of mathematics involves discovering patterns and using these to formulate and prove conjectures, resulting in theorems. Since the 1960s, mathematicians have used computers to assist in the discovery of patterns and formulation of conjectures ${ }^{1}$, most famously in the Birch and Swinnerton-Dyer conjecture ${ }^{2}$, a Millennium Prize Problem ${ }^{3}$. . Here we provide examples of new fundamental results in pure mathematics that have been discovered with the assistance of machine learning-demonstrating a method by which machine learning can aid mathematicians in discovering new conjectures and theorems. We propose a process of using machine learning to discover potential patterns and relations between mathematical objects, understanding them with attribution techniques and using these observations to guide intuition and propose conjectures. We outline this machine-
Ieatanilu

Idea from [1]

Idea from [1]

Idea from [1]

Key Idea

Key Idea

Key Idea

Key Idea

Idea from [1]

Their view of the future

What I'm interested in

Mathematician Steps
Prove Theorem

How can we use Reinforcement Learning or generative techniques?

Example Problems

Given an $n \times n$ finite integer lattice, what's the size of the largest subset such that no three points form an isosceles triangle?

Combinatorics

Example Problems

Can we upper bound the number of points in the real plane So that no empty convex-6-gons exist?

Convex Geometry

Example Problems

Combinatorics

Convex Geometry

Aim

Aim

Reinforcement Learning / Generative Model

Aim

My edits

Mathematician Steps

Computational Steps

Things to keep in mind

Possible Problems

1. Reinforcement Learning requires very large amounts of data

Things to keep in mind

Possible Problems

1. Reinforcement Learning requires very large amounts of data
2. Reinforcement Learning is slow

Things to keep in mind

Possible Problems

1. Reinforcement Learning requires very large amounts of data
2. Reinforcement Learning is slow

Some perspectives on solutions

1. Math data is synthetic, so we can synthesise a lot!

Things to keep in mind

Possible Problems

1. Reinforcement Learning requires very large amounts of data
2. Reinforcement Learning is slow

Some perspectives on solutions

1. Math data is synthetic, so we can synthesise a lot!
2. My university has lots of Nvidia GPUs!

Things to keep in mind

Possible Problems

1. Reinforcement Learning requires very large amounts of data
2. Reinforcement Learning is slow

Some perspectives on solutions

1. Math data is synthetic, so we can synthesise a lot!
2. My university has lots of Nvidia GPUs! (But yes, we do need to engineer carefully).

Cool Papers

nature communications

Explore content \checkmark About the journal \checkmark Publish with us \checkmark

nature > nature communications > articles > article

Article | Open Access | Published: 12 April 2023

Combining data and theory for derivable scientific

 discovery with AI-DescartesCristina Cornelio \boxtimes, Sanjeeb Dash, Vernon Austel, Tyler R. Josephson, Joao Goncalves, Kenneth L. Clarkson, Nimrod Megiddo, Bachir El Khadir \& Lior Horesh \boxminus

Nature Communications 14, Article number: 1777 (2023) | Cite this article
19k Accesses 401 Altmetric Metrics

Abstract

Scientists aim to discover meaningful formulae that accurately describe experimental data. Mathematical models of natural phenomena can be manually created from domain knowledge and fitted to data, or, in contrast, created automatically from large datasets with machine-learning algorithms. The problem of incorporating prior knowledge expressed as constraints on the functional form of a learned model has been studied before, while finding models that are consistent with prior knowledge expressed via general logical axioms is an open problem. We develop a method to enable principled derivations of models of natural phenomena from axiomatic knowledge and experimental data by combining logical reasoning with symbolic regression. We demonstrate these concepts for Kepler's third law of planetary motion, Einstein's relativistic time-dilation law, and Langmuir's theory of adsorption. We show we can discover governing laws from few data points when logical reasoning is used to distinguish between candidate formulae having similar error on the data

Cool Papers

Constructions in combinatorics via neural networks

Adam Zsolt Wagner*

Abstract

We demonstrate how by using a reinforcement learning algorithm, the deep cross-entropy method, one can find explicit constructions and counterexamples to several open conjectures in extremal combinatorics and graph theory. Amongst the conjectures we refute are a question of Brualdi and Cao about maximizing permanents of pattern avoiding matrices, and several problems related to the adjacency and distance eigenvalues of graphs.

Train RL / Generative
Model to search
knowledge space

Extract Patterns

Conjecture Candidate $f^{\prime \prime}$

My edits

My edits

Tell me a joke about matrix decomposition

Why did the matrix refuse to go on vacation?

Tell me a joke about matrix decomposition

Why did the matrix refuse to go on vacation?
It didn't want to decompose under all that pressure! © ©

References

[1] Davies, A., Veličković, P., Buesing, L. et al. Advancing mathematics by guiding human intuition with Al. Nature 600, 70-74 (2021).
[2] Cornelio, C., Dash, S., Austel, V. et al. Combining data and theory for derivable scientific discovery with Al-Descartes. Nat Commun 14, 1777 (2023).
[3] Fawzi, A., Balog, M., Huang, A. et al. Discovering faster matrix multiplication algorithms with reinforcement learning. Nature 610, 47-53 (2022).

Karan Srivastava
ksrivastava4@wisc.edu

