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Aim
• To discover meaningful laws of nature from experimental data 

 
i.e. Given some data  we want to find a function  so that  

 for each data point. 
{(x1, . . . , xn, y)i}i∈𝒟 f

y = f(x1, . . . , xn)

r =
a(1 − e2)

1 + e cos(θ1 − θ2)



Aim
• Given some data  we want to find a function  so that  
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Pros: Models are very interpretable 
Drawback: Functional form is fixed
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Approach 1: Symbolic Regression
In particular, we will look at the 

approach in this paper: 



Symbolic Regression
• Given some data  we want to find a function  so that  

 for each data point when the functional form of  is unknown. 

• In particular, given a set  of symbols (e.g. etc), find a function (string)  built 
from these symbols so that  fits the data. 
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Symbolic Regression
• In particular, given a set  of symbols (e.g. etc), find a function (string)  built 

from these symbols so that  fits the data. 

• Search grows exponentially with the number of symbols. 

• Brute force search becomes infeasible very quickly 
 

 years,     years, and so on. 

S +, − , ÷ , , f
y = f(x1, . . . , xn)

f =
e− x2

2

2π
∼ 30 ω =

1 + v
c

1 − v2

c2

∼ 106

For generic functions , this is NP hardf(x1, . . . , xn)



Symbolic Regression

BUT 
SCIENCE IS 

NOT 
GENERIC



Symbolic Regression
In physics and in lots of science applications, functions we care about tend to be nice in the 
following ways:  

1. Units:  and its variables have to be dimensionally consistent 

2. Low degree polynomials: Parts of  tend to have low degree polynomials 

3. Compositionality:  is a composition of elementary functions 

4. Smoothness:  is continuous and often analytic on its domain 

5. Symmetry:  comes with translational, rotational, and scaling symmetry with respect to 
some variables 

6. Separability:  can be written as the sum or product of two parts with no common 
variables

f
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Symbolic Regression
In physics and in lots of science applications, functions we care about tend to be nice in the 
following ways:  

1. Units: Can use this to transform the problem to fewer independent variables  

2. Low degree polynomials: Can use this to do polynomial fits for parts of  

3. Compositionality: Can use brute force for parts of the function 

4. Smoothness:  can be learned by a NN 

5. Symmetry: Can be tested by a neural network trained on the data 

6. Separability: Can be tested by a neural network trained on the data

f

f



Symbolic Regression
The idea:

Input Current Data (Function)

Reduce variables by 
dimensionality

Train a NN

Query NN to reduce 
variables 

Poly fit / Brute force 

If poly fit / 
brute force 

fails 

If poly fit / 
brute force 
succeeds 



Symbolic Regression - Example
Input Current Data (Function)

Reduce variables by 
dimensionality

Train a NN

Query NN to reduce 
variables 

Poly fit / Brute force 

Gm1m2

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2



Symbolic Regression - Example
Input Current Data (Function)

Reduce variables by 
dimensionality

Train a NN

Query NN to reduce 
variables 

Poly fit / Brute force 

Gm2
1

x2
1

m2

m1

( x2

x1
− 1)2 + ( y2

x1
− y1

x1
)2 + ( z2

x1
− z1

x1
)2

Gm1m2

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

Idea: Because  is dimensionally consistent, we can factor it into a 
component that encodes the dimension and a dimensionless term

f



Symbolic Regression - Example
Input Current Data (Function)

Reduce variables by 
dimensionality

Train a NN

Query NN to reduce 
variables 

Poly fit / Brute force 

Gm2
1

x2
1

a
(b − 1)2 + (c − d)2 + (e − f )2

Gm1m2

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

Idea: Because  is dimensionally consistent, we can factor it into a 
component that encodes the dimension and a dimensionless term 

This reduces the number of variables to consider.

f



Symbolic Regression - Example
Input Current Data (Function)

Reduce variables by 
dimensionality

Train a NN

Query NN to reduce 
variables 

Poly fit / Brute force 

Idea: Because  is dimensionally consistent, we can factor it into a 
component that encodes the dimension and a dimensionless term 

Represent each variable  by a 5 integer vector  corresponding to the 
fundamental units of the vector (being meter, second, kilogram, kelvin, 
volt). Let  be a matrix whose th column is . Define  to be the 
corresponding vector for . 

Let  be a solution to  and  be a basis for the null space of  

Then apply 

, where 

f

xi ui

M i ui b
y

p Mp = b U M

xi ↦
n

∏
i=j

xUi j
j , y ↦

y
y*

y* =
n

∏
i=1

xpi
i



Symbolic Regression - Example
Input Current Data (Function)

Reduce variables by 
dimensionality

Train a NN

Query NN to reduce 
variables 

Poly fit / Brute force 

a
(b − 1)2 + (c − d)2 + (e − f )2

Train a NN on the transformed columns. This is a black box oracle that 
we can query. 

Architecture used: 

Dimension of layers: (128,128,128,64,64,64) 
Epochs: 100 
Learning rate: 0.005 
Batch Size: 2048 
Rms loss and Adam optimization 
Weight decay: 10−2



Symbolic Regression - Example
Input Current Data (Function)

Reduce variables by 
dimensionality

Train a NN

Query NN to reduce 
variables 

Poly fit / Brute force 

a
(b − 1)2 + (c − d)2 + (e − f )2

Test for symmetry, separability, and other properties and reduce 
variables accordingly

a
(b − 1)2 + g2 + (e − f )2

a
(b − 1)2 + g2 + h2

a
1

(b − 1)2 + g2 + h2

Translational Symmetry

Translational Symmetry

Multiplicative Separability



Symbolic Regression - Example
Input Current Data (Function)

Reduce variables by 
dimensionality

Train a NN

Query NN to reduce 
variables 

Poly fit / Brute force 

Translational Symmetry 

Let  be the function learned by the neural network. Then 
translational symmetry with respect to  and  corresponds to 

 

If the difference is , then apply  

F(x1, . . . , xn)
x1 x2

F(x1 + a, x2 + a, x3, . . . xn) − F(x1, x2, . . . , xn) ≈ 0

< ϵsym x1 ↦ x2 − x1



Symbolic Regression - Example
Input Current Data (Function)

Reduce variables by 
dimensionality

Train a NN

Query NN to reduce 
variables 

Poly fit / Brute force 

Multiplicative Separability 

 is multiplicatively separable in  if  can be factored as  
  

With no common variables.  

To test this, pick constants  and check if 

 

Up to . If so, then separate the problem of learning  into two 
subproblems of learning  and 

f x1, x2 f
f(x1, x2) = g(x1)h(x2)

c1, c2

f(x1, x2) =
f(x1, c2) ⋅ f(c1, x2)

f(c1, c2)

ϵsep f
g h



Symbolic Regression - Example
Input Current Data (Function)

Reduce variables by 
dimensionality

Train a NN

Query NN to reduce 
variables 

Poly fit / Brute force 

Translational Symmetry 

Multiplicative Separability 

Rotational Symmetry 

Scaling Symmetry 

Additive Separability



Symbolic Regression - Example
Input Current Data (Function)

Reduce variables by 
dimensionality

Train a NN

Query NN to reduce 
variables 

Poly fit / Brute force 

Test brute force / polynomial fit

a
1

(b − 1)2 + g2 + h2

(b − 1)2 + g2 + h2



Symbolic Regression - Example
Input Current Data (Function)

Reduce variables by 
dimensionality

Train a NN

Query NN to reduce 
variables 

Poly fit / Brute force 

Test brute force / polynomial fit

a
1

(b − 1)2 + g2 + h2

(b − 1)2 + g2 + h2

If this fails, then recursively take the smaller problems and rerun



Symbolic Regression - Example
This was tested on 100 equations from Feynman’s lecture notes and 20 harder equations



Symbolic Regression - Example
This was tested on 100 equations from Feynman’s lecture notes and 20 harder equations 

The success rate was better than existing state of the art:



Symbolic Regression - Example
Couple of interesting notes:  

1. Failure cases. For example, the Radiational Gravitational Waves equation:

P = −
32
5

G4

c5

(m1m2)2(m1 + m2)
r5

y = −
32a2(1 + a)

5b5

In reverse polish notation, this is the string 

 

Which would take too long to solve. This is separable, but the 5th power in the denominator cause 
a wide dynamic range and so it was not detected

aaa > * * bbbbb * * * * /



Symbolic Regression - Example
Couple of interesting notes:  

2. Noise: Performance was consistent up to Gaussian noise levels of  but dropped by 50% 
with noise around . 

The thresholds were not adjusted to each problem so the tolerance can probably be improved. 

ϵ = 10−4

ϵ = 10−2



Symbolic Regression - Example

Couple of interesting notes:  

3. Constants: Constants were treated as their own variables and symbols in the data. It’s not clear 

otherwise how we would discover relations such as , , etc.  

But how do we learn these specific relationships with real data? 

G π
G4

c5



Symbolic Regression

Incorporate physics knowledge 
into the search

Problems:  

1. Sensitivity to noise 
2. Constant Relationships are difficult to detect 
3. Require lots of data to train a neural network



Approach 2: Symbolic Regression 
with background knowledge



Approach 2: Symbolic Regression 
with background knowledge

In particular, we will very briefly 
look at the approach in this paper: 



Symbolic Regression with Background Knowledge

Key Idea: 

Use symbolic regression 
methods to generate lots of 
candidates for the formula

Given some background theory  
, use an Automated Theorem 

Prover (ATP) to rank and prove 
these candidates. Select the 

B



Symbolic Regression with Background Knowledge

Main Contributions: 

1. Incorporating a derivability module into the search.

Candidate Formula 

f =
p

1.507x1 + 0.302x2

Derivability - Prove the Formula

B →
p

1.507x1 + 0.302x2

Existential Derivability

∃c1, c2 s.t. B →
p

c1x1 + c2x2

Confirm Functional Form Run your favorite method of 
fitting parameters



Symbolic Regression with Background Knowledge

Main Contributions: 

2. If not derivable, then have the theorem proved derive bounds on the error between 
candidate function and functions derivable from the background theory

Point wise 
reasoning error

βr
2 =

m

∑
i=1

f(xi) − fℬ(xi)
fℬ(xi)

Generalized 
reasoning error

βr
∞ =

m

∑
i=1

f(xi) − fℬ(xi)
fℬ(xi)



Symbolic Regression with Background Knowledge

Results: Ran this on more problems from the Feynman notes as well as supplementary problems. 



Symbolic Regression with Background Knowledge

Some Comments: 

Failure Cases:  

Most of the failure cases came from when the theorem prover could not prove derivability or 
good bounds on the error. 



Approach 3: Polynomial 
Optimization



Approach 3: Polynomial 
Optimization

In particular, we will look at the 
approach in this paper: 



Polynomial Optimization

Key Idea: There are a lot of laws in science that can be transformed to polynomial 
expressions.  

Examples: 

Kepler’s Third Law:   

Compton Scattering Equation:  

Note: We will model things after polynomials and polynomial inequalities. We will not deal 
with diffeqs and trig inequalities directly, but we can get some mileage as we will see. 

p =
4π2(d1 + d2)3

G(m1 + m2)
↦ p2G(m1 + m2) − 4π2(d1 + d2)3

λ2 − λ1 =
h

mec
(1 − cos θ) ↦ (λ2 − λ1)hmec3(1 + cos θ)



Polynomial Optimization

Key Idea: There are a lot of laws in science that can be transformed to polynomial 
expressions.  

Previous methods:

Search 
Space

Formulae 
that fit data

Search 
Space

Formulae 
that fit data

Derivable 
Formulae

Symbolic Regression

Theorem Prover



Polynomial Optimization

Key Idea: There are a lot of laws in science that can be transformed to polynomial 
expressions.  

This work:

Search 
Space

Derivable 
Formulae

Polynomial Optimization

Algebraic Geometry Results

Derivable 
Formulae



Polynomial Optimization
The idea is to solve the following optimization problem 



Polynomial Optimization
The idea is to solve the following optimization problem 

This can be defined with  or  lossl2 l∞

Fidelity to data



Polynomial Optimization
The idea is to solve the following optimization problem 

Distance between the discovered  
 and the background theory q

𝒢 ∩ ℋ



Polynomial Optimization
The idea is to solve the following optimization problem 

Want a  
polynomial in  x1



Polynomial Optimization
The idea is to solve the following optimization problem 

Bound on the  
complexity of the expression



Polynomial Optimization - Distance to Background
Given some axioms , inequalities , where 

 and data , define the sets 

 and  

We want to find a polynomial  such that  

 

h1(x), . . . , hl(x) = 0 g1(x) ≥ 0,....,gk(x) ≥ 0
gi, hj ∈ ℝ[x1, . . . , xn] 𝒟

𝒢 = {x ∈ ℝn |gi(x) = 0} ℋ = {x ∈ ℝn |hj(x) ≥ 0}

f

x ∈ 𝒢 ∩ ℋ ⟹ f(x) ≥ 0

   Theorem: Putinar’s Positive Stellensatz 
   If  satisfy the Archimedean property, i.e. there exists  and sum of squares polynomials  such that  

, then for any degree  polynomial , the implication above holds if and only if there exist sum of 

squares polynomials  and real polynomials  such that  

gi, hk R α0, . . . , αl

R −
n

∑
i=1

x2
i = α0 +

k

∑
i=1

αigi d f

α0, . . . , αk β1, . . . , βl

f = α0 +
k

∑
i=1

αigi +
l

∑
j=1

βjhj



Polynomial Optimization - Distance to Background
Given some axioms , inequalities , where 

 and data , define the sets 

 and  

We want to find a polynomial  such that  

 

Case 1: Incomplete background knowledge 

h1(x), . . . , hl(x) = 0 g1(x) ≥ 0,....,gk(x) ≥ 0
gi, hj ∈ ℝ[x1, . . . , xn] 𝒟

𝒢 = {x ∈ ℝn |gi(x) = 0} ℋ = {x ∈ ℝn |hj(x) ≥ 0}

f

x ∈ 𝒢 ∩ ℋ ⟹ f(x) ≥ 0

d(q, 𝒢 ∩ ℋ) = min
αi∈Σn,2d,βj∈ℝn,d

∥Coeff (q − α0 − ∑ αigi − ∑ βjhj)∥2



Polynomial Optimization - Distance to Background
Given some axioms , inequalities , where 

 and data , define the sets 

 and  

We want to find a polynomial  such that  

 

Case 2: Inconsistent background knowledge 

 

h1(x), . . . , hl(x) = 0 g1(x) ≥ 0,....,gk(x) ≥ 0
gi, hj ∈ ℝ[x1, . . . , xn] 𝒟

𝒢 = {x ∈ ℝn |gi(x) = 0} ℋ = {x ∈ ℝn |hj(x) ≥ 0}

f

x ∈ 𝒢 ∩ ℋ ⟹ f(x) ≥ 0

d(q, 𝒢 ∩ ℋ) = min
αi∈Σn,2d,βj∈ℝn,d

∥Coeff (q − α0 − ∑ αigi − ∑ βjhj)∥2

s.t.  if ,  
 if  

 

αi = 0 zi = 0 zi ∈ {0,1}
βj = 0 yj = 0,yj ∈ {0,1}

∑ zi + ∑ yj ≤ τ



Polynomial Optimization - Example
Let’s say we want to discover Kepler’s third law 

We have data  as well as some knowledge of physics 

Then running solving the optimization problem on a solver gives  

Which is the correct expression post-factoring

{(d1, d2, m1, m2, p)i}

p =
4(d1 + d2)3

G(m1 + m2)



Polynomial Optimization - Example
Then running solving the optimization problem on a solver gives  

Which is the correct expression post-factoring. What’s more is that we also get the 
corresponding :αi



Polynomial Optimization - Example
Then running solving the optimization problem on a solver gives  

Which is the correct expression post-factoring. What’s more is that we also get the 
corresponding :αi



Polynomial Optimization - Example
Some other examples that were tested: 

Radiational Gravitational Wave Power:                                                with background 

Hagen-Poiseulle Equation:  



Polynomial Optimization - Results



Polynomial Optimization 

Some thoughts: 

1. Solving the LP can be slow. In the worst case (for gravitational waves) 



Ongoing work



Projecting varieties
Aim: Discover Kepler’s Third Law using just background theory

⟹

π : V( f1, f2, f3, f4, f5) ⊆ ℝ8 ⟶ V̄ ⊆ ℝ5

Algebraically: Eliminating Variables

I = ⟨ f1, . . . , f5⟩ ⊆ ℝ[m1, d1, m2, d2, Fc, Fg, w, p]Encode axioms as an ideal:

I ∩ ℝ[m1, d1, m2, d2, p]Compute the intersection

This can be done using Groebner bases: 

FC

FG

Other Variables

G = ⟨g1, . . . , gk⟩ = IEncode axioms as an ideal:

G ∩ ℝ[m1, d1, m2, d2, p]Compute the intersection



Discovery

Abductive inference
We know we can recover a formula from a complete axiom system

?



Abductive inference

Discovery

Abductive inference
In practice, axiom systems can be incomplete. Can we rediscover a missing 
axiom in the discovery process?

?



Abductive inference
Key idea: Using data and variable elimination, we can still discover formulae 
with AI Hilbert

Rediscover Kepler with 70 data points if we omit wp − 1

Take the new “discovered” surface and break it into its 
irreducible components 

 

Where each  is irreducible. This is known as “primary 
decomposition” in commutative algebra.  

V( f1, f2, f3, q) = ⋃V(pi)

V(pi)

Assumption: The discovered formula  can be proven if we had an additional axiom. 
i.e.  

Where  is unknown.  
Then .

q
q = α1 f1 + α2 f2 + α3 f3+α4F4

α4F4
⟨ f1, f2, f3, q⟩ = ⟨ f1, f2, f3, α4F4⟩



Abductive inference

For Kepler’s third law with  missing, we get the following primary 
decomposition: 

wp − 1

⟨m2, Fg, Fc⟩ ∩ ⟨d2, m1, Fg, Fc⟩ ∩ ⟨d1 + d2, m1, Fc − Fg, w2m2d2 − Fg⟩ ∩

⟨Fg − Fc, (wp − 1), m1p2 − d2
1d2 − 2d1d2

2 − d3
2 , Fg(d1 + d2)2 − m1m2, wm2d2 − Fgp⟩ ∩

∩ ⟨Fg − Fc, (wp + 1), m1p2 − d2
1d2 − 2d1d2

2 − d3
2 , Fg(d1 + d2)2 − m1m2, wm2d2 + Fgp⟩

⟨ f1, f2, f3, q⟩ =

p2m1m2 − d2
1d2m2 − 2d1d2

2m2 − d3
2m2

f1
f2
f3
q



Abductive inference results



Other goings on
Dataset and 

Benchmarking

Aim: Creating a 
synthetic dataset of 
polynomial axioms, 
data, and discovered 
formulae for 
benchmarking progress 
in the field

New Discoveries

Aim: Apply the tools 
developed to research 
problems in physics to 
discover new scientific 
facts. Current work 
ongoing in cosmology. 

Non-polynomial 
Systems

Aim: Extending the 
current framework to 
systems involving 
differential equations, 
black box axioms, and 
trig functions 
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