Mathematics For Machine Learning

Directed Reading Project

Student names redacted for privacy

Mentored by Karan Srivastava
Fall 2021 Directed Reading Program

Primary Objective: To obtain a general understanding of the basic mathematical
methods for machine learning algorithms.
Secondary Objective: Create a basic regression neural network using Keras.

® Primary text:

Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong. Mathematics
for Machine Learning. Cambridge University Press, 2020.

2/36

Cholesky Decomposition

A symmetric, positive definite matrix A can be factorized into a product of
A= LLT, where L is a lower triangular matrix with positive diagonal elements.

On the book "Mathematics for Machine Learning” we read in this project, there
is an example of a 3 x 3 matrix example. According to the book, the algorithm
can be written as:

Example 4.10 (Cholesky Factorization)
Consider a symmetric, positive definite matrix A € R3*3. We are inter-
ested in finding its Cholesky factorization A = LLT, ie.,

a1l U21 Ugy lll 0 0 lll ZZI 131
A= lay a9 asg| =LL = |lyy Ly 0] |0 Iy ls| . (4.45)

a3z1 a3y A3z 0 0 I3

lsy lsy lss

Multiplying out the right-hand side yields

#Z lo1liy l31l11
A = |lnln 13, + 13 ls1lay 4 lsalon

Isnlin ladoy + laalae 12, + 13, + 12,

(4.46)

We will demonstrate it with python codes in the next slide.

3/36

Code Demonstration

The following code is a demonstration of the Cholesky Decomposition to fit
y = ax? + bx + c for the following 10 discrete points.

X = np.array([[4.1702], [7.2032], [0.0011],[3.0233], [1.4676],[0.9234], [1.8626],[3.4556], [3.96771, [5.3882]])
np.array([[53.9964],[152.1652], [6.5497],[31.1123], [7.7682], [5.8707], [13.1319], [38.6460], [47.4939], [86.8607]])

<

The actual process can be shown below:

def cholesky2(A):
n = len(A)

Create zero matrix for L
L = [[e.8] * n for i in range(n)]

for i in range(n):
for k in range(i+1):
tmp_sum = sum(L[i][j] * L[k][j] for j in range(k))

if (i == k): # Diagonal elements
#l_{kk} = \sqrt{ a_{kk} - \sum*{k-1} {j=1} L~2 {k7}}
L[i][k] = math.sqrt(A[i][i] - tmp_sum)
else:
#L_{ik} = \frac{i}{L_{kk}} \left(a _{ik} - \sum{k-1} {j=1} L_{ij} L _{kj} \right)
L[310k] = (1 / LIKI[K] * (A[i][K] - tmp_sum))

return L
L=cholesky2(b)
L

[[65.79411989533059, 6.0, ©.0],
[11.3151790681185018, 3.6845678997450135, 6.6],
[2.1523095726@51, 1.9254347356276625, 1.2825151479137313]]

From here we can approximate a,b and c.

4/36

Singular Value Decompositions

Let A € R™ ™ be a matrix with m < n. A singular value decomposition of A
(SVD) is a matrix in the form:

A=UsV" =Y oju,V,

with orthogonal matrix U € R™*™ with column vectors u; = 1,...,m and
V e R™™ with column vectors v; = 1,...,n. Moreover, ¥ € R™*" is a diagonal
matrix. The graph below will provide a more intuitive explanation.

i MEE

mxn_ mxm mxn nxn
U
Uﬂ E :
1
1

= I,

5/36

SVD Through Power Iteration

In general, SVD cannot be solved through an exact method. Iterative methods
are usually used. Power iteration is one way to solve for SVD. The following code
will demonstrate solving the biggest singular value of a random 3 x 4 matrix using
power iteration.

1.0947415795641948
A = np.random. rand(3,4)

1100
np.random. seed(0) 1075 @
def power_iteration(A,n): Los0
#4s shoun in Math535_Lecture_IIIb.pdf
b = np.transpose(A).dot(A)
v_new_1 = np.random.rand(A.shape[1]) 1025
for _ in range(n): 1000
V_new = b.dot(v_new_1)/ np.linalg.norm(b.dot (v_new_1))
v_new_1 = v_new 0975
return v_new_1
0950
yi-=101
For n in range(100): 09251 o
#compute svd
u=power_iteration(A.T,n) 0 2 “ 60 8 100

v = power_iteration(A,n)
#ue want to have the orange value as on the pdf
t comlun as from power iteration), M, V (the first right comlun) #to check my answer

my_svd = y_1[-1]

reshape((1,-1)) @ A @ v.reshape((-1,1))

u,5,vh = np.linalg.svd(A)
1. d(x[@][e:

IO true_svd = np.diag(s)[0]
o dtlranee o) print(my_svd, true_svd)

plt.plot(x,y_1
plt. shou() 1.8947415795641948 [1.09474158 0. o. 1

6/36

Example: Movie Rating Y

Consider three viewers (Ali, Beatrix, Chandra) rating four different movies (Star
Wars, Blade Runner, Amelie, Delicatessen). Their ratings are values between 0
(worst) and 5 (best) and encoded in a matrix A € R**3

Ali Beatrix Chandra

5 4 1 Star Wars
A— 5 5 0 Blade Runner

0 0 5 Amelie

1 0 4 Delicatessen

7/36

Example: Movie Rating Y

We interpret the left-singular vectors u; as stereotypical movies and the
right-singular vectors v; as stereotypical viewers. The SVD of A is shown below:

—-0.6710 0.0236 0.4647 —0.5774
A— —0.7197 0.2054 —0.4759 0.4619
~1—0.0939 —0.7705 —0.5268 —0.3464

—0.1515 —-0.6030 0.5293 —0.5774

U
9.6438 0 0
0 6.3639 0
0 0 0.7056
0 0 0
)

—0.7367 —0.6515 —0.1811
0.0852 0.1762 —0.9807
0.6708 —0.7379 —0.0743

VT
8/ 36

Movie recommendation: Code Demonstration

We are using data sets from MovielLens, which contains 1 million ratings from
6000 users on 4000 movies.
Load the data sets with Pandas:

[10] data = pd.io.parsers.read_csv('ratings.dat’',

names=['user_id', 'movie id', 'rating', 'time'],
engine='python', delimiter='::")

movie_data = pd.io.parsers.read_csv('movies.dat’,
names=['movie_id', 'title', 'genre'],
engine='python', delimiter='::")

Create the ratings matrix with rows as movies and columns as users and
normalize the matrix:
[11] ratings_mat = np.ndarray(
shape=(np.max(data.movie_id.values), np.max(data.user_id.values)),
dtype=np.uint8)
ratings_mat[data.movie_id.values-1, data.user_id.values-1] = data.rating.values

[12] normalised mat = ratings_mat - np.asarray([(np.mean(ratings mat, 1))1).T

9/36

Movie recommendation: Code Demonstration

Compute SVD:

[13] A = normalised_mat.T / np.sqrt(ratings_mat.shape[0] - 1)
U, S, V = np.linalg.svd(A)

Helper functions to select and display the most similar movies:

[14] def top_cosine_similarity(data, movie_id, top_n=10):
index = movie id - 1 # Movie id starts from 1
movie_row = data[index, :]
magnitude = np.sqrt(np.einsum('ij, ij -> i', data, data))
similarity = np.dot(movie_row, data.T) / (magnitude[index] * magnitude)
sort_indexes = np.argsort(-similarity)
return sort_indexes[:top n]

Helper function to print top N similar movies
def print similar _movies(movie_data, movie_id, top_indexes):
print('Recommendations for {0}: \n'.format(

movie_data[movie_data.movie_id == movie_ id].title.values([0]))
for id in top_indexes + 1:
print(movie_data[movie_data.movie_id == id].title.values[0])

10 / 36

Movie recommendation: Code Demonstration

Test with one movie ID

[15] k = 50
movie_id = 521 # Grab an id from movies.dat
top_n = 10
sliced = V.T[:, :k] # representative data
indexes = top_cosine similarity(sliced, movie_id, top_n)

print_similar movies(movie_data, movie_id, indexes)
Recommendations for Romeo Is Bleeding (1993):

Romeo Is Bleeding (1993)

Priest (1994)

Tough and Deadly (1995)

Chungking Express (1994)

Three Colors: White (1994)

Hideaway (1995)

Little Big League (1994)

Malice (1993)

National Lampoon's Senior Trip (1995)
Calendar Girl (1993)

11/ 36

Intro to Neural Network

Hidden
Dendrite Axon
terminal

Node of
Ranvier

Schwann cell
Myelin sheath
Nucleus

12/ 36

Intro to Neural Network W

Key components of Neural Network:

Input Nodes (input layer)
Hidden nodes (hidden layer)

Output Nodes (output layer)

Connections and weights

Activation function

13/ 36

Intro to Neural Network W

Inputs Output

® Red: Multiply by weights w;: w1 * 1 and ws * 22
® Green: Add the terms together: wy * x7 + wo * T2 + b

® Orange: pass through an activation function: f(wy % 21 + wa * 3 + b)

14 / 36

Intro to Neural Network W

Commonly used activation functions:

Tanh RelLU
tanh(z) max(0,)
X
"X
Sigmoid Linear
o(z) = H'l,_

15 / 36

Intro to Neural Network W

Deep Learning: multiple hidden layers

.
(//A\\\ IMA\\ .A\
“"'; “::ii"\ "‘"'J’ '//

X ’

V*l/“‘:ﬁ\’;" ';'/.\ v"
’3‘.'%%'/ N 6\,’ ! L7 \V“'"'A
Srastara S i oCl 4\"'
K ‘ﬁ" ’ / "p“' A\'\\

"A “" . 0 "
5‘\“\\' .,m S r)‘:.\\ .

) o

CHORR

""’(“\\"
ORI
" ,,,,A \\“ ‘V
A A A

16 / 36

Intro to Neural Network W

How to select: number of layers, number of neurons per layer, activation function,
weights?
Minimize loss function when training! Commonly used loss functions:

* Ordinary Least Squared Loss Function: L(6) = 32'=1 (y; — 4:)?

® Cross-Entropy Loss Function: L(0) = — Z;jv Ui x log(y;)

* Mean Absolute Percentage Error: L(f) = 109% /=N Iyly_y‘

How to minimize the loss function? Take derivative and set to zero!

17/ 36

Taking Derivatives w.r.t. a Matrix

For a function f:R"™ = R, x — f(x), x € R™ of n variables 1,2, ..., x,,
define the partial derivatives as

8f Ii f(dfl‘i’h,fg,...,l’n)*f(l')

—— = lim

8931 h—0 h

ﬁ:hm f(m17x27"'7xn+h)_f($)

axn h—0 h

and collect them in the row vector

8f 5] 0, 5]
Vi=g= 2o ... axﬂ-

18 / 36

Derivatives w.r.t. a Matrix

Similarly, if f: R — R™ with m outputs f1,..., fi., define

Af1
ox

19/ 36

Jacobian Matrix

Informal Construction of the Jacobian

Based on the prior two definitions, we can generalize the derivative of any
function f : R™ — R™, z +— f(z), € R™ in the form of the Jacobian matrix.
Letting = (z1,22,...,2,) € R™ and f = (f1, fo, ..., fm) € R™, we have

of of of of :
pr [BTI e E} (Def. of Gradient)
9f1 of1 ... Ofr
Oxq Oxo oz,
ofs 9f2 ... Ofa
oz Oxo Oxp

(Def. of Gradient)

Ofm Ofm ... Ofm
Oxq Oxo 0Tn

20 /36

Jacobian Matrix as a Linear Transform W

One can verify that the Jacobian matrix behaves in the manner we expect a
derivative to behave. Notice that, for some differentiable function f : R™ — R™
and z, g € R™ with x # xg,

lim |lf(z) = f(w0) — O f(x0) - (¥ — x0)]|2

@0 |z — o2

:0’

where 0, f(x¢) is the Jacobian matrix of f with respect to = evaluated at the g,
and (+) is the standard matrix multiplication operator. This limit implies that the
Jacobian is the best locally linear approximation of f at x, as expected.

21/36

Let f: R™ — R be a function of n variables z1,...,z,. We wish to find a quick
way to find

min f(x) or max f(x).

min f(z) max f(z)
In the context of neural networks, we typically seek to find minimums. To do so,
one may choose to employ a standard gradient descent algorithm.

Figure: A sample gradient descent on a two-dimensional quadratic surface.
Deisenroth et al. [2020]

22/36

Optimization with Gradient Descents

Let f: R™ — R be a differentiable function of n variables. Let z € R™ be the
column vector such that f(z) is a local minimum. Then z is the limit of the
sequence {z;}5°, given recursively by

Tipr =i — (V)T

for some choice of zg. Each v; € R in the sequence {~;}32, is called the step size.

23 /36

Bringing Everything Together: Matrix Backpropagation

For sake of example, construct a neural network with the following properties:

® Two inputs and two outputs

One hidden layer containing two "neurons” (nodes)

There are 2 % 2 x 2 = 8 weights given by wy, ..., ws,
® The activation function for each neuron is given by the sigmoid

1
~ 1+exp(—x)

o(x)

24 /36

The Example NN

HIDDEN LAYER OUTPUT LAYER
INPUT LAYER Activation: g (sigmoid)

a(¥1)

OUTPUTS

o(¥2)

\

T1owl*Mew2 iz Y1 = w5 * o(T1) + w6 * o(T2)

T2 w3 i1 s wa iz Y2 = w7 * o(T1) + w8 * o(T2)

Figure: Sample NN with two inputs, one hidden layer with two nodes, and two
outputs.

25 /36

Matrix Backpropagation Y

Suppose we have initialized our weights w1, ws, ..., ws at random and passed our
data through the NN using the described process. Suppose the data points
rendered by our NN are given by the vector Y = [¢(Y}),0(Y2)]T, and the
expected data values Y; and Y5 are given by the vector Y = [71, TQ]T We then
compute our error according to some loss function, suppose the mean squared
error

1 —
E=_|Y -Y|>
S =Y

26 /36

Matrix Backpropagation Y

We would like the minimize the error with respect to a given weight. Suppose we
want to minimize error with respect to weight ws. To do so, we perform a
gradient descent! Letting o(Y1) = % and o(Y2) = X2 and o(T1) = 07 and
O'(TQ) = 09,

OF o OF 621 80’1

(9105 B 821 80’1 6105.

We know each of those derivatives!

OF —
oy =S Th
0%,

— =3(1-%
80‘1 1(1)
Jor _,

8w5_ !

27 /36

Matrix Backpropagation Y

Using all these values, we use the gradient descent algorithm to update ws to a

new weight ws:
OF

_ 787105'
After repeating this process for all 8 weights, we run the NN again (the second

epoch), find the errors, and update weights again. We proceed for however many
epochs we wish. Once we run the last epoch, we have "trained” the neural net.

wh = ws

28 /36

Comments on Step Sizes \/

The step size sequence should generally follow the below rules:

® After one iteration, if the value of the function increases, the step size was
too large.

® [f the function value decreases, increase the step size.

The process of finding a good step size sequence can be a delicate balancing act.

29 /36

Gradient descents work poorly on surfaces with higher curvatures. Consider the
rolling ball analogy:

® Imagine a ball rolling down a U-shaped ramp

® [f the ramp is really steep, the ball will continue past the lowest point and
rapidly oscillate up and down the ramp before settling at the bottom

® [f the ramp is not very steep, the ball will gently slide to a rest at the
bottom of the ramp

To account for the "momentum” of the ball, one might include an error term. In
the context of gradient descents, we have:

i =xi-1 — (V)" +alz,
with
Axi =X — Ti—1

for some « € [0,1]. The momentum term is particularly useful when the gradient

can only be approximated.
30 /36

Stochastic Gradient Descents (SGD)

Oftentimes computing function gradients can be too computationally taxing to be
viable. In such cases, we must settle for approximations. In such cases, we use
SGDs. Consider a data set containing N values. Suppose that the parameter we
wish to optimize over is §. We consider the loss function L defined by

N

and update the gradient descent algorithm accordingly:

N
Tit1 = L5 — Vi Z(VLn(GZ))T

n=1

The benefit is that we can choose the batch size N to be however small as we
wish, increasing computational efficiency at the cost of accuracy. Therefore, SGD
is useful when tackling large-scale ML projects.

31/36

Sample Keras NN

Sequential
t Dense

_LIMIT
UPPER_LIMIT

np.random.randint(low=LOWER LIMIT , high=UPPER_LIMIT , size=(10e@@ , 1))

X.astype(np.float32)

y_function = np.vector
)

¥ = y_function(X

Sample Keras NN

Sequential(

d(Dense(32, input di
-add(Dense(64, activat
.add(Dense(1))

-compile(

.fit(X, ¥, epochs=

33/36

Sample Keras NN

IGH,test size, dtype = int)
ample_X.reshap
ample_Y

redictions = model.predict(
rounded_pred = np.round(pred
rounded_pred = rounded_pred

34 /36

Accuracy: 95.06%

35 /36

References | W

Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong. Mathematics for
Machine Learning. Cambridge University Press, 2020.

36 /36

	References
	References

