
Mathematics For Machine Learning
Directed Reading Project

Student names redacted for privacy

Mentored by Karan Srivastava
Fall 2021 Directed Reading Program

Objectives

Primary Objective: To obtain a general understanding of the basic mathematical
methods for machine learning algorithms.

Secondary Objective: Create a basic regression neural network using Keras.

• Primary text:

Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong. Mathematics
for Machine Learning. Cambridge University Press, 2020.

2 / 36

Cholesky Decomposition

definition

A symmetric, positive definite matrix A can be factorized into a product of
A = LLT , where L is a lower triangular matrix with positive diagonal elements.

On the book ”Mathematics for Machine Learning” we read in this project, there
is an example of a 3× 3 matrix example. According to the book, the algorithm
can be written as:

We will demonstrate it with python codes in the next slide.

3 / 36

Code Demonstration

The following code is a demonstration of the Cholesky Decomposition to fit
y = ax2 + bx+ c for the following 10 discrete points.

The actual process can be shown below:

From here we can approximate a,b and c.
4 / 36

Singular Value Decompositions

Definition

Let A ∈ Rn×m be a matrix with m ≤ n. A singular value decomposition of A
(SVD) is a matrix in the form:

A = UΣV T =

r∑
j=1

σjujV
T
j

with orthogonal matrix U ∈ Rm×m with column vectors uj = 1, . . . ,m and
V ∈ Rn×n with column vectors vj = 1, . . . , n. Moreover, Σ ∈ Rm×n is a diagonal
matrix. The graph below will provide a more intuitive explanation.

5 / 36

SVD Through Power Iteration

In general, SVD cannot be solved through an exact method. Iterative methods
are usually used. Power iteration is one way to solve for SVD. The following code
will demonstrate solving the biggest singular value of a random 3× 4 matrix using
power iteration.

6 / 36

Example: Movie Rating

Consider three viewers (Ali, Beatrix, Chandra) rating four different movies (Star
Wars, Blade Runner, Amelie, Delicatessen). Their ratings are values between 0
(worst) and 5 (best) and encoded in a matrix A ∈ R4×3

A =

Ali Beatrix Chandra


5 4 1 Star Wars
5 5 0 Blade Runner
0 0 5 Amelie
1 0 4 Delicatessen

7 / 36

Example: Movie Rating

We interpret the left-singular vectors ui as stereotypical movies and the
right-singular vectors vj as stereotypical viewers. The SVD of A is shown below:

A =


−0.6710 0.0236 0.4647 −0.5774
−0.7197 0.2054 −0.4759 0.4619
−0.0939 −0.7705 −0.5268 −0.3464
−0.1515 −0.6030 0.5293 −0.5774


︸ ︷︷ ︸

U
9.6438 0 0

0 6.3639 0
0 0 0.7056
0 0 0


︸ ︷︷ ︸

Σ−0.7367 −0.6515 −0.1811
0.0852 0.1762 −0.9807
0.6708 −0.7379 −0.0743


︸ ︷︷ ︸

V T

8 / 36

Movie recommendation: Code Demonstration

We are using data sets from MovieLens, which contains 1 million ratings from
6000 users on 4000 movies.
Load the data sets with Pandas:

Create the ratings matrix with rows as movies and columns as users and
normalize the matrix:

9 / 36

Movie recommendation: Code Demonstration

Compute SVD:

Helper functions to select and display the most similar movies:

10 / 36

Movie recommendation: Code Demonstration

Test with one movie ID

11 / 36

Intro to Neural Network

12 / 36

Intro to Neural Network

Key components of Neural Network:

• Input Nodes (input layer)

• Hidden nodes (hidden layer)

• Output Nodes (output layer)

• Connections and weights

• Activation function

13 / 36

Intro to Neural Network

• Red: Multiply by weights wi: w1 ∗ x1 and w2 ∗ x2

• Green: Add the terms together: w1 ∗ x1 + w2 ∗ x2 + b

• Orange: pass through an activation function: f(w1 ∗ x1 + w2 ∗ x2 + b)

14 / 36

Intro to Neural Network

Commonly used activation functions:

15 / 36

Intro to Neural Network

Deep Learning: multiple hidden layers

16 / 36

Intro to Neural Network

How to select: number of layers, number of neurons per layer, activation function,
weights?
Minimize loss function when training! Commonly used loss functions:

• Ordinary Least Squared Loss Function: L(θ) =
∑i=N

i=1 (yi − ŷi)
2

• Cross-Entropy Loss Function: L(θ) = −
∑i=N

i=1 ŷi × log(yi)

• Mean Absolute Percentage Error: L(θ) = 100%
N

∑i=N
i=1

|yi−ŷi|
yi

How to minimize the loss function? Take derivative and set to zero!

17 / 36

Taking Derivatives w.r.t. a Matrix

Gradient Definition Deisenroth et al. [2020]

For a function f : Rn → R, x 7→ f(x), x ∈ Rn of n variables x1, x2, . . . , xn,
define the partial derivatives as

∂f

∂x1
= lim

h→0

f(x1 + h, x2, . . . , xn)− f(x)

h

...

∂f

∂xn
= lim

h→0

f(x1, x2, . . . , xn + h)− f(x)

h

and collect them in the row vector

∇f =
∂f

∂x
=

[
∂f
∂x1

∂f
∂x2

· · · ∂f
∂xn

]
.

18 / 36

Derivatives w.r.t. a Matrix

Gradient Definition Deisenroth et al. [2020]

Similarly, if f : R → Rm with m outputs f1, . . . , fm, define

∂f

∂x
=



∂f1
∂x

∂f2
∂x

...

∂fm
∂x

 .

19 / 36

Jacobian Matrix

Informal Construction of the Jacobian

Jacobian Matrix

Based on the prior two definitions, we can generalize the derivative of any
function f : Rn → Rm, x 7→ f(x), x ∈ Rn in the form of the Jacobian matrix.
Letting x = (x1, x2, . . . , xn) ∈ Rn and f = (f1, f2, . . . , fm) ∈ Rm, we have

∂f

∂x
=

[
∂f
∂x1

∂f
∂x2

· · · ∂f
∂xn

]
(Def. of Gradient)

=



∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
...

. . .
...

∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn

 . (Def. of Gradient)

20 / 36

Jacobian Matrix as a Linear Transform

One can verify that the Jacobian matrix behaves in the manner we expect a
derivative to behave. Notice that, for some differentiable function f : Rn → Rm

and x, x0 ∈ Rn with x ̸= x0,

lim
x→x0

∥f(x)− f(x0)− ∂xf(x0) · (x− x0)∥2
∥x− x0∥2

= 0,

where ∂xf(x0) is the Jacobian matrix of f with respect to x evaluated at the x0,
and (·) is the standard matrix multiplication operator. This limit implies that the
Jacobian is the best locally linear approximation of f at x0, as expected.

21 / 36

Visual

Let f : Rn → R be a function of n variables x1, . . . , xn. We wish to find a quick
way to find

min
x∈Rn

f(x) or max
x∈Rn

f(x).

In the context of neural networks, we typically seek to find minimums. To do so,
one may choose to employ a standard gradient descent algorithm.

Figure: A sample gradient descent on a two-dimensional quadratic surface.
Deisenroth et al. [2020]

22 / 36

Optimization with Gradient Descents

Gradient Descent

Let f : Rn → R be a differentiable function of n variables. Let x ∈ Rn be the
column vector such that f(x) is a local minimum. Then x is the limit of the
sequence {xi}∞i=0 given recursively by

xi+1 = xi − γi(∇f(xi))
⊤,

for some choice of x0. Each γi ∈ R in the sequence {γi}∞i=0 is called the step size.

23 / 36

Bringing Everything Together: Matrix Backpropagation

For sake of example, construct a neural network with the following properties:

• Two inputs and two outputs

• One hidden layer containing two ”neurons” (nodes)

• There are 2 ∗ 2 ∗ 2 = 8 weights given by w1, . . . , w8,

• The activation function for each neuron is given by the sigmoid

σ(x) =
1

1 + exp(−x)
. (1)

24 / 36

The Example NN

Figure: Sample NN with two inputs, one hidden layer with two nodes, and two
outputs.

25 / 36

Matrix Backpropagation

Suppose we have initialized our weights w1, w2, . . . , w8 at random and passed our
data through the NN using the described process. Suppose the data points
rendered by our NN are given by the vector Y = [σ(Y1), σ(Y2)]

⊤, and the
expected data values Y1 and Y2 are given by the vector Y = [Y1, Y2]

⊤. We then
compute our error according to some loss function, suppose the mean squared
error

E =
1

2
∥Y − Y ∥2.

26 / 36

Matrix Backpropagation

We would like the minimize the error with respect to a given weight. Suppose we
want to minimize error with respect to weight w5. To do so, we perform a
gradient descent! Letting σ(Y1) = Σ1 and σ(Y2) = Σ2 and σ(T1) = σ1 and
σ(T2) = σ2,

∂E

∂w5
=

∂E

∂Σ1

∂Σ1

∂σ1

∂σ1

∂w5
.

We know each of those derivatives!

∂E

∂Σ1
= Σ1 − Y 1

∂Σ1

∂σ1
= Σ1(1− Σ1)

∂σ1

∂w5
= σ1

27 / 36

Matrix Backpropagation

Using all these values, we use the gradient descent algorithm to update w5 to a
new weight w′

5:

w′
5 = w5 − γ

∂E

∂w5
.

After repeating this process for all 8 weights, we run the NN again (the second
epoch), find the errors, and update weights again. We proceed for however many
epochs we wish. Once we run the last epoch, we have ”trained” the neural net.

28 / 36

Comments on Step Sizes

The step size sequence should generally follow the below rules:

• After one iteration, if the value of the function increases, the step size was
too large.

• If the function value decreases, increase the step size.

The process of finding a good step size sequence can be a delicate balancing act.

29 / 36

Momentum

Gradient descents work poorly on surfaces with higher curvatures. Consider the
rolling ball analogy:

• Imagine a ball rolling down a U-shaped ramp

• If the ramp is really steep, the ball will continue past the lowest point and
rapidly oscillate up and down the ramp before settling at the bottom

• If the ramp is not very steep, the ball will gently slide to a rest at the
bottom of the ramp

To account for the ”momentum” of the ball, one might include an error term. In
the context of gradient descents, we have:

xi = xi−1 − γi(∇f(xi))
⊤ + α∆xi,

with

∆xi := xi − xi−1

for some α ∈ [0, 1]. The momentum term is particularly useful when the gradient
can only be approximated.

30 / 36

Stochastic Gradient Descents (SGD)

Oftentimes computing function gradients can be too computationally taxing to be
viable. In such cases, we must settle for approximations. In such cases, we use
SGDs. Consider a data set containing N values. Suppose that the parameter we
wish to optimize over is θ. We consider the loss function L defined by

L(θ) :=

N∑
n=1

Ln(θ),

and update the gradient descent algorithm accordingly:

xi+1 = xi − γi

N∑
n=1

(∇Ln(θi))
⊤.

The benefit is that we can choose the batch size N to be however small as we
wish, increasing computational efficiency at the cost of accuracy. Therefore, SGD
is useful when tackling large-scale ML projects.

31 / 36

Sample Keras NN

32 / 36

Sample Keras NN

33 / 36

Sample Keras NN

34 / 36

Visual

Accuracy: 95.06%

35 / 36

References I

Marc Peter Deisenroth, A Aldo Faisal, and Cheng Soon Ong. Mathematics for
Machine Learning. Cambridge University Press, 2020.

36 / 36

	References
	References

